New results of palaeomagnetic and rock magnetic studies of gabbroids of the Korosten pluton of the Ukrainian Shield

Received: September 29, 2025
Authors:
1
Institute of Geophysics, National Academy of Sciences of Ukraine,

Palaeomagnetic and rock magnetic studies were conducted on anorthosites and gabbros from the Volodarsk-Volynskyi massif of the Korosten pluton to obtain new palaeomagnetic determinations that meet modern reliability criteria. The results confirm that the main magnetic carriers in these rocks are magnetite and titanomagnetite, which contain a small amount of Ti. A bipolar characteristic component of magnetisation, isolated in the temperature range of 500–580 °C, demonstrates a primary origin and thermoremanent nature. The new 1.76 Ga palaeomagnetic pole (Φ = 29.3°, Λ = 168.2°, A95 = 3.3°, N = 6) is in good agreement with palaeomagnetic determinations of similar age for the Inhul and Volyn domains of the Ukrainian Shield. This suggests that the evolution of these domains within the unified structure of the Ukrainian Shield began at least 1.76 Ga. To clarify the timing of the amalgamation of the East European Platform, and to calculate its palaeolatitudinal position and kinematic parameters (latitudinal drift and angular rotation velocity) of its segments, a selection of the most reliable Palaeoproterozoic palaeomagnetic determinations for Fennoscandia and Sarmatia was compiled. Palaeogeographic reconstructions of these segments were performed for specific time intervals. According to the palaeomagnetic data, their final amalgamation occurred no earlier than 1.76 Ga. At that time, these segments were located in the equatorial zone, and the Ukrainian Shield (as part of Sarmatia) was rotated ~40° counterclockwise relative to Fennoscandia.

  1. Bakhmutov, V. G., Poliachenko, I. B., & Cherkes, S. I. (2018). Problems of palaeomagnetism of the Precambrian of the territory of Ukraine. Geophysical Journal, 40(5), 245–268. https://doi.org/10.24028/gzh.0203-3100.v40i5.2018.147491 (in Russian).
  2. Bakhmutov, V., Mytrokhyn, O., Poliachenko, I., & Cherkes, S. (2023). New palaeomagnetic data for Palaeoproterozoic AMCG complexes of the Ukrainian Shield. Geofizicheskiy Zhurnal, 45(4), 3–19. https://doi.org/10.24028/gj.v45i4.286283
  3. Bakhmutov, V., Mytrokhyn, O., Cherkes, S., & Poliachenko, I. (2025). Magnetism and anisotropy of magnetic susceptibility of gabbroids of the Volodarsk-Volynskyi massif of the Korosten pluton of the Ukrainian Shield. Geofizicheskiy Zhurnal, 47(4). https://doi.org/10.24028/gj.v47i4.335689
  4. Bogdanova, S. V., Pashkevich, I. K., Buryanov, V. B., Makarenko, I. A., Orlyuk, M. I., Skobelev, V. M., Starostenko, V. I., & Legostaeva, O. V. (2004). The 1.80–1.74 Ga gabbro-anorthosite-rapakivi Korosten Pluton in the NW Ukrainian Shield: a 3-D geophysical reconstruction of deep structure. Tectonophysics, 381(1–4), 5–27. https://doi.org/10.1016/j.tecto.2003.10.023.
  5. Bogdanova, S. V., Gorbatschev, R. G., & Garetsky, R. G. (2005). The East European Craton. In: R.C. Selley, L.R. Cocks, I.R. Plimer (Eds.), Encyclopedia of Geology (Vol. 2, pp.34–49). Elsevier. https://doi.org/10.1016/B0-12-369396-9/00426-3
  6. Buchan, K. L. (2013). Key paleomagnetic poles and their use in Proterozoic continent and supercontinent reconstructions: A review. Precambrian Research, 238, 93–110. https://doi.org/10.1016/j.precamres.2013.09.018
  7. Chadima, M., & Hrouda, F. (2006). Remasoft 3.0 a user-friendly paleomagnetic data browser and analyzer. Travaux Géophysiques, 27, 20–21.
  8. Cherkes, S., Bakhmutov, V., Mytrokhyn, O., Poliachenko, I., & Skarboviychuk, T. (2023). Palaeomagnetism of the Palaeoproterozoic basic rocks of the Volodarsk-Volynskyi massif, Korosten plutonic complex. In International Conference of Young Professionals “GeoTerrace-2023” (Vol. 2023, GeoTerrace-2023-008). European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.2023510008.
  9. Cherkes, S., Bakhmutov, V., Poliachenko, I., Mytrokhyn, O., Shpyra, V., & Yakukhno, V. (2023). Palaeomagnetism of the Palaeoproterozoic Rocks of the ∼2 Ga Novoukrainka and Buky Massifs of the Ukrainian Shield. In 17th International Conference Monitoring of Geological Processes and Ecological Condition of the Environment (Vol. 2023, Mon23-199). European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.2023520199
  10. Damm, V., Gendler, T. S., Gooskova, E. G., Khramov, A. N., Lewandowski, M., Nozharov, P., Pavlov, V. I., Petrova, G. N., Pisarevsky, S. A., & Sokolov, S. J. (1997). Palaeomagnetic studies of Proterozoic rocks from the Lake Onega region, southeast Fennoscandian Shield. Geophysical Journal International, 129(3), 518–530. https://doi.org/10.1111/j.1365-246X.1997.tb04491.x
  11. Elming, S.-Å. (1985). A palaeomagnetic study of Svecokarelian basic rocks from northern Sweden. Geologiska Föreningen i Stockholm Förhandlingar, 107(1), 17–35. https://doi.org/10.1080/11035898509452608
  12. Elming, S.-Å. (1994). Palaeomagnetism of Precambrian rocks in northern Sweden and its correlation to radiometric data. Precambrian Research, 69(1–4), 61–79. https://doi.org/10.1016/0301-9268(94)90079-5
  13. Elming, S.-Å., & Mattsson, H. (2001). Post Jotnian basic Intrusions in the Fennoscandian Shield, and the break up of Baltica from Laurentia: a palaeomagnetic and AMS study. Precambrian Research, 108(3–4), 215–236. https://doi.org/10.1016/S0301-9268(01)00131-0
  14. Elming, S.-Å., Moakhar, M.O., Layer, P., & Donadini, F. (2009). Uplift deduced from remanent magnetization of a proterozoic basic dyke and the baked country rock in the Hoting area, Central Sweden: a palaeomagnetic and 40Ar/39Ar study. Geophysical Journal International, 179(1), 59–78. https://doi.org/10.1111/j.1365-246X.2009.04265.x
  15. Elming, S.-Å., Shumlyanskyy, L., Kravchenko, S., Layer, P., & Söderlund, U. (2010). Proterozoic Basic dykes in the Ukrainian Shield: A palaeomagnetic, geochronologic and geochemical study – The accretion of the Ukrainian Shield to Fennoscandia. Precambrian Research, 178(1-4), 119–135. https://doi.org/10.1016/j.precamres.2010.02.001
  16. Elming, S.-Å., Layer, P., & Söderlund, U. (2019). Cooling history and age of magnetization of a deep intrusion: A new 1.7 Ga key pole and Svecofennian-post Svecofennian APWP for Baltica. Precambrian Research, 329, 182–194. https://doi.org/10.1016/j.precamres.2018.05.022
  17. Fedotova, M.A., Khramov, A.N., Pisakin, B.N., & Priyatkin, A.A. (1999). Early Proterozoic palaeomagnetism: new results from the intrusives and related rocks of the Karelian, Belomorian and Kola provinces, eastern Fennoscandian Shield. Geophysical Journal International, 137(3), 691–712. https://doi.org/10.1046/j.1365-246x.1999.00817.x
  18. Halls, H. C. (1976). A Least-Squares Method to find a Remanence Direction from Converging Remagnetization Circles. Geophysical Journal International, 45(2), 297–304. https://doi.org/10.1111/j.1365-246X.1976.tb00327.x
  19. Iosifidi, A. G., Bogdanova, S., Khramov, A. N., & Bylund, G. (1999). Palaeomagnetic study of Palaeoproterozoic granitoids from the Voronezh Massif, Russia. Geophysical Journal International, 137(3), 723–731. https://doi.org/10.1046/j.1365-246x.1999.00818.x
  20. Jarboe, N. A., Koppers, A.A., Tauxe, L., Minnett, R., & Constable, C. (2012). The Online MagIC Database: Data Archiving, Compilation, and Visualization for the Geomagnetic, Paleomagnetic and Rock Magnetic Communities. In American Geophysical Union Fall Meeting 2012 (GP31A-1063). American Geophysical Union.
  21. Khramov, A. N., Fedotova, M.A., Pisakin, B.N., & Priyatkin, A.A. (1997). Paleomagnetism of Early Proterozoic intrusions and associated rocks of Karelia and the Kola Peninsula: Contribution to the development of a model for the Precambrian evolution of the Russian-Baltic craton. Fizika Zemli, (6), 24–41. (in Russian)
  22. Kirschvink, J. L. (1980). The least-squares line and plane and the analysis of palaeomagnetic data. Geophysical Journal International, 62(3), 699–718. https://doi.org/10.1111/j.1365-246X.1980.tb02601.x
  23. Klein, R., Pesonen, L. J., Mänttäri, I., & Heinonen, J. S. (2016). A late Paleoproterozoic key pole for the Fennoscandian Shield: A paleomagnetic study of the Keuruu diabase dykes, Central Finland. Precambrian Research, 286, 379-397. https://doi.org/10.1016/j.precamres.2016.10.013
  24. Kravchenko, S. N. (2005). First estimate for the age of a mesoproterozoic palaeomagnetic pole from the Volodarsk-Volynsky Massif, The Ukrainian Shield. Studia Geophysica et Geodaetica, 49, 177–190. https://doi.org/10.1007/s11200-005-0004-6
  25. Lahtinen, R., Köykkä, J., Salminen, J., Sayab, M., & Johnston, S.T. (2023). Paleoproterozoic tectonics of Fennoscandia and the birth of Baltica. Earth-Science Reviews, 246, 104586. https://doi.org/10.1016/j.earscrev.2023.104586
  26. Lowrie, W. (1990). Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophysical Research Letters, 17(2), 159–162. https://doi.org/10.1029/GL017I002p00159
  27. Lubnina, N.V., Pisarevsky, S.A., Stepanova, A.V., Bogdanova, S.V., & Sokolov, S.J. (2017). Fennoscandia before Nuna/Columbia: Paleomagnetism of 1.98–1.96 Ga mafic rocks of the Karelian craton and paleogeographic implications. Precambrian Research, 292, 1–12. https://doi.org/10.1016/j.precamres.2017.01.011
  28. Luoto, T., Salminen, J., Mertanen, S., Elming, S. Å., & Pesonen, L. J. (2023). New palaeoproterozoic palaeomagnetic data from Central and Northern Finland indicate a long-lived stable position for Fennoscandia. Geophysical Journal International, 235(2), 1810–1831. https://doi.org/10.1093/gji/ggad247
  29. Mertanen, S., & Pesonen, L. J. (1994). Preliminary results of a palaeomagnetic and rock magnetic study of the Proterozoic Tsuomasvarri intrusions, northern Fennoscandia. Precambrian Research, 69(1–4), 25–50. https://doi.org/10.1016/0301-9268(94)90077-9
  30. Mertanen, S., & Pesonen, L. J. (1995). Palaeomagnetic and rock magnetic investigations of the Sipoo Subjotnian quartz porphyry and diabase dykes, southern Fennoscandia. Physics of the Earth and Planetary Interiors, 88(3–4), 145–175. https://doi.org/10.1016/0031-9201(94)02992-K
  31. Mertanen, S., Halls, H. C., Vuollo, J. I., Pesonen, L. J., & Stepanov, V. S. (1999). Paleomagnetism of 2.44 Ga mafic dykes in Russian Karelia, eastern Fennoscandian Shield – implications for continental reconstructions. Precambrian Research, 98(3–4), 197–221. https://doi.org/10.1016/S0301-9268(99)00050-9
  32. Mertanen, S., Eklund, O., Shebanov, A., Frank-Kamenetsky, D., & Vasilieva, T. (2006a). Paleo- and mesoproterozoic dyke swarms in the Lake Ladoga area, NW Russia – palaeomagnetic studies. In E. Hanski, S. Mertanen, O.T. Ramo, & J. Vuollo (Eds.), Dyke Swarms – Time Markers of Crustal Evolution (pp. 63–74). Taylor & Francis.
  33. Mertanen, S., Holtta, P., Pesonen, L. J., & Paavola, J. (2006b). Palaeomagnetism of palaeoproterozoic dolerite dykes in central Finland. In E. Hanski, S. Mertanen, O.T. Ramo, & J. Vuollo (Eds.), Dyke Swarms – Time Markers of Crustal Evolution (pp. 243–256). Taylor & Francis.
  34. Mikhailova, N. P., Kravchenko, S. N., & Glevasskaia, A. M. (1994). Paleomagnetism of anorthosites. Kyiv: Naukova Dumka. (in Russian).
  35. Müller, R. D., Cannon, J., Qin, X., Watson, R. J., Gurnis, M., Williams, S., Pfaffelmoser, T., Seton, M., Russell, S.H.J., & Zahirovic S. (2018). GPlates: Building a virtual Earth through deep time. Geochemistry, Geophysics, Geosystems, 19(7), 2243–2261. https://doi.org/10.1029/2018GC007584
  36. Mytrokhyn, O. V. (2011). Anothosite-rapakivi-granite association of Ukrainian Shield (geology, composition and origin) (Doctoral dissertation). Available from National Repository of Academic Texts (RN 0511U000260). (in Ukrainian)
  37. Mytrokhyn, O., Bilan, O., & Hrushchynska, O. (2011). Manifestations of contact metamorphism in the rocks of the ancient “frame” of the Korosten pluton. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 54, 19–23. http://www.library.univ.kiev.ua/ukr/host/10.23.10.100/db/ftp/visnyk/geolog_54_2011.pdf (in Ukrainian)
  38. Neuvonen, K. J. (1986). On the direction of remanent magnetization of the quartz porphyry dikes in SE Finland. Bulletin of Geological Survey of Finland, 58(1–2), 195–201. https://doi.org/10.17741/bgsf/58.1.013
  39. Pisarevsky, S. A., & Sokolov, S. J. (2001). The magnetostratigraphy and a 1780 Ma palaeomagnetic pole from the red sandstones of the Vazhinka River section, Karelia, Russia. Geophysical Journal International, 146(2), 531–538. https://doi.org/10.1046/j.0956-540x.2001.01479.x
  40. Pisarevsky, S. (2005). New edition of the Global Paleomagnetic Database. Eos, Transactions AGU, 86(17), 170. https://doi.org/10.1029/2005EO170004
  41. Pisarevsky, S.A., & Bylund, G. (2010). Paleomagnetism of 1780–1770 Ma Mafic and Composite Intrusions of Småland (Sweden): Implications for the Mesoproterozoic Supercontinent. American Journal of Science, 310(9), 1168–1186. https://doi.org/10.2475/09.2010.15
  42. Salminen, J., Klein, R., & Mertanen, S. (2019). New rock magnetic and paleomagnetic results for the 1.64 Ga Suomenniemi dyke swarm. SE Finland. Precambrian Research, 329, 195–210. https://doi.org/10.1016/j.precamres.2018.01.001
  43. Salminen, J., Elming, S. Å., Mertanen, S., Wang, C., Almqvist, B., & Moakhar, M.O. (2021). Paleomagnetic studies of rapakivi complexes in the Fennoscandian shield – Implications to the origin of Proterozoic massif-type anorthosite magmatism. Precambrian Research, 365, 106406. https://doi.org/10.1016/j.precamres.2021.106406
  44. Shcherbakova, V. V., Lubnina, N. V., Shcherbakov, V. P., Zhidkov, G. V., & Tsel’movich, V. A. (2017). Paleointensity determination on Neoarchaean dikes within the Vodlozerskii terrane of the Karelian craton. Izvestiya, Physics of the Solid Earth, 53, 714–732. https://doi.org/10.1134/S1069351317050111
  45. Shumlyanskyy, L. V. (2012). Petrology and geochronology of rock complexes of the north-west region of the Ukrainian shield and its western slope (Doctoral dissertation). Available from National Repository of Academic Texts (RN 0512U000865). (in Ukrainian)
  46. Shumlyanskyy, L., Hawkesworth, C., Billström, K., Bogdanova, S., Mytrokhyn, O., Romer, R., Dhuime, B., Claesson, S., Ernst, R., Whitehouse, M., & Bilan, O. (2017). The origin of the Palaeoproterozoic AMCG complexes in the Ukrainian shield: New U-Pb ages and Hf isotopes in zircon. Precambrian Research, 292, 216–239. https://doi.org/10.1016/j.precamres.2017.02.009
  47. Torsvik, T. H., & Meert, J. G. (1995). Early Proterozoic palaeomagnetic data from the Pechenga Zone (north-west Russia) and their bearing on Early Proterozoic palaeogeography. Geophysical Journal International, 122(2), 520–536. https://doi.org/10.1111/j.1365-246X.1995.tb07011.x
  48. Torsvik, T. H., & Smethurst, M. A. (1999). Plate tectonic modelling: virtual reality with GMAP. Computers and Geosciences, 25(4), 395–402. https://doi.org/10.1016/s0098-3004(98)00143-5
  49. Van der Voo, R. (1990). The reliability of paleomagnetic data. Tectonophysics, 184(1), 1–9. https://doi.org/10.1016/0040-1951(90)90116-P
  50. Veikkolainen, T. H., Biggin, A. J., Pesonen, L. J., Evans, D. A., & Jarboe, N. A. (2017). Advancing Precambrian palaeomagnetism with the PALEOMAGIA and PINT (QPI) databases. Scientific Data, 4, 170068. https://doi.org/10.1038/sdata.2017.68
  51. Veselovskiy, R. V., Arzamastsev, A. A., Demina, L. I., Travin, A. V., & Botsyun, S. B. (2013). Paleomagnetism, geochronology, and magnetic mineralogy of Devonian dikes from the Kola alkaline province (NE Fennoscandian Shield). Izvestiya, Physics of the Solid Earth, 49, 526–547. https://doi.org/10.1134/S106935131303018X
  52. Veselovskiy, R. V., Samsonov, A. V., Stepanova, A. V., Salnikova, E. B., Larionova, Y. O., Travin, A. V., Arzamastsev, A. A., Egorova, S. V., Erofeeva, K. G., Stifeeva, M. V., Shcherbakova, V. V., Shcherbakov, V. P., Zhidkov, G. V., & Zakharov, V. S. (2019). 1.86 Ga key paleomagnetic pole from the Murmansk craton intrusions – Eastern Murman Sill Province, NE Fennoscandia: Multidisciplinary approach and paleotectonic applications. Precambrian Research, 324, 126–145. https://doi.org/10.1016/j.precamres.2019.01.017