HYDRODYNAMICAL INSTABILITY OF NEWTONIAN FLOW BEFORE AN AXISYMMETRIC SUDDEN CONTRACTION

2021;
: 32-38
Received: September 26, 2021
Revised: October 26, 2021
Accepted: November 19, 2021
1
Lviv Polytechnic National University, Department of hydraulic and sanitary engineering
2
Lviv Polytechnic National University, Department of Hydraulic and Water Engineering
3
Lviv Polytechnic National University, Department of Hydraulic and Water Engineering

The sizes of the vortex region before the axisymmetric sudden contraction of the circular pipe at the Newtonian flow have been investigated. Area ratios 0.250 and 0.500 were considered. The sizes of the vortex region have the extreme dependence with a maximum at the transition of the laminar flow into a turbulent flow one. When the Reynolds number at the laminar flow increase, these sizes also increase, and they decrease at the turbulent flow. In both cases, the sizes of the vortex region are proportional to the Reynolds number. A transition region between laminar flow and turbulent flow lies in the range of the Reynolds number from 3000 to 5300 and 750…1300, determined by the diameter of a bigger pipe of sudden expansion and a step height correspondingly

Ando, T. & Shakouchi, T. (2004). Flow characteristics over forward facing step and through abrupt contraction pipe and drag reduction. Research Reports of the Faculty of Engineering, 29. Mie: Mie University. URL: www.eng.mie-u.ac.jp/research/activities/29/29_1.pdf.

Arsirij, V. A. (2003). Usovershenstvovanie gidro- i aerodinamiki oborudovaniya s cel'yu povysheniya effektivnosti. Proceedings of Odessa Polytechnic University, 2 (20), 1–5. [in Russian]

Back, L. H., & Roschke, E. J. (1972). Shear-layer flow regimes and wave instabilities and reattachment lengths downstream of an abrupt circular channel expansion. Journal of Applied Mechanics, 39 (3), 677–681. DOI: https://doi.org/10.1115/1.3422772.

Bajbakov, O. V., Bashta, T. M., Kirillovskij, Yu. L., Nekrasov, B. B., & Rudnev, S. S. (1982). Gidravlika, gidromashiny i gidroprivody: Uchebnik dlya mashinostroitel'nyh vuzov. Moskva: Mashinostroenie. [in Russian]

Barbosa-Saldana, J. G., Morales-Contreras, O. A., Jimenez-Bernal, J. A., Gutierrez-Torres, C. del C., & Moreno-Pacheco, L. A. (2013). Numerical and experimental results for flow through a forward facing step channel. International Journal of Recent Research and Applied Studies, 15 (2) 177–189. URL: https://www.arpapress.com/Volumes/Vol15Issue2/IJRRAS_15_2_06.pdf.

Boger, D. V., Hur, D. U., & Binnington, R. J. (1986). Further observations of elastic effects in tubular entry flows, Journal of Non-Newtonian Fluid Mechanics, 20, 31–49, DOI: https://doi.org/10.1016/0377-0257(86)80014-3.

Borzenko, E. I., Ryltseva, K. E., Frolov, O. Yu., & Shrager, G. R. (2017). Calculation of the local resistance coefficient of viscous incompressible fluid flow in a pipe with sudden contraction. Tomsk State University Journal of Mathematics and Mechanics. 48, 36–48. DOI: https://doi.org/10.17223/19988621/48/4.

Bullen, P. R., Cheeseman, D. J., & Hussain, L. A. (1996). A study of Turbulent Flow in Pipe Contractions. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering; 210(3), 171–180. DOI: https://doi.org/10.1243/PIME_PROC_1996_210_312_02.

Chugaev, R. R. (1982). Gidravlika (Tekhnicheskaya mekhanіka zhidkosti). Leningrad: Energoizdat, Leningradskoe otd-nie. [in Russian]

Krhan, A., & Giorgini, F. (2016). Numerical investigations of laminar flow in a pipe with a sudden contraction of his cross-sectional area. Technical report. Linköping: Linköping University. URL: https://www.academia.edu/23612237/Numerical_investigations_of_laminar_flow_in_a_pipe_with_a_sudden_contraction_of_his_cross-sectional_area.

Kvitkovskij Ju. V. (1986). O strukture i soderzhanii razdela gidrodinamiki ‘Neravnomernoe napornoe dvizhenie zhidkosti’. In Metodika prepodavanija gidravliki napornyh techenij (pp. 64-73). Leningrad: Leningradskij polіtehnіcheskij institut. [in Russian]

Moretskiy, V. Y., Zholobov, V. V., & Varybok, D. I. (2017). Influence of mutual placement of technological equipment onto hydraulic resistance. Science & Technologies: Oil and Oil Products Pipeline Transportation, 1(28), 53–61. URL: https://elibrary.ru/item.asp?id=28777146. [in Russian]

Orel, V. I. (2012). Zalezhnist dovzhyny hidrodynamichnoi kintsevoi dilianky vid kryteriiu Reinoldsa pry raptovomu zvuzhenni potoku ridyny. III Mizhnarodna konferentsiiaNaukovo-tekhnichne ta orhanizatsiino-ekonomichne spryiannia reformam u budivnytstvi i zhytlovo-komunalnomu hospodarstvi. Makiivka, Ukraina. [in Ukrainian]

Orel, V. I. (2013). Investigation of the proportion of irreversible losses in total pressure losses at the sudden narrowing of pipe. Problems of Water supply, Sewerage and Hydraulics, 21, 181–190. [in Ukrainian]

Palacios-Sanchez, F. M. (2011). Estudo Experimental do Escoamento de Fluido Newtoniano em Contração Abrupta Axissimétrica com a Técnica de Velocimetria por Imagem de Partículas. (Dissertação (Mestrado em Engenharia)., Universidade Tecnológica Federal do Paraná, Curitiba. URL: www.ppgem.ct.utfpr.edu.br/dissertacoes/SANCHEZ,%20Fredy%20Palacios.pdf.

Palacios-Sanchez, F., Noguchi-Machuca, J. L., Franco, A. T., & Morales, R. E. M. (2010). Experimental and numerical study of turbulent newtonian flow through an axisymmetric sudden contraction. Proceedings of ENCIT 2010. 13th Brazilian Congress of Thermal Sciences and Engineering. Uberlandia, MG, Brazil. URL: https://www.abcm.org.br/anais/encit/2010/PDF/ENC10-0572.pdf.

Popov, A. M. (2000). Razrabotka i realizaciya gidrodinamicheskogo metoda rascheta harakteristik drossel'nyh elementov gidroapparatury pri dokriticheskih chislah Rejnol'dsa (Doctor of philosophy dissertation). Moskovskij energeticheskij institut (tekhnicheskij universitet), Moskva. [in Russian]

Reynaud, S., Debray, F., Franc, J. P., & Maitre, T. (2005). Hydrodynamics and heat transfer in two-dimensional minichannels. International Journal of Heat and Mass Transfer, 48 (15), 3197–3211. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2005.02.020.

Samohvalov, A. S. (1989). Zakonomernosti techenij nen'yutonovskih zhidkostej na perekhodnyh uchastkah kanalov (Doctor of philosophy dissertation). Кyiv Civil Engineering Institute, Кyiv. [in Russian]

Tananaev, A. V. (1979). Techenie v kanalah MGD-ustrojstv. Moskva: Atomizdat. [in Russian]

Wendt, Elis M. S. (2015). Visualização de Escoamento Turbulento de Fluido Newtoniano em Contrações Abruptas com a Técnica PIV. Monografia. Curitiba: Universidade Tecnológica Federal do Paraná. URL: http://repositorio.roca.utfpr.edu.br/jspui/bitstream/1/10141/1/CT_DAMEC_2016_2_06.pdf.