BUILDING HEAT SUPPLY SYSTEM BASED ON HYBRID SOLAR COLLECTORS

2023;
: 55-60
https://doi.org/10.23939/jtbp2023.02.055
Received: September 28, 2023
Revised: October 24, 2023
Accepted: November 03, 2023
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Department of Heat and Gas Supply, and Ventilation, Lviv Polytechnic National University
4
Lviv Polytechnic National University, Department of Heat and Gas Supply and Ventilation

Increasing the efficiency of solar heat supply systems is one of the important problems of solar energy. The research presented in this article is aimed at improving the efficiency of hybrid solar collectors without a transparent coating for building heating systems. One of the key challenges in the field of solar energy is the development of new technologies to ensure high collection of solar energy and to integrate it into traditional heating and hot water systems. The study shows that hybrid solar collectors with the placement of heat carrier circulation circuit tubes above the heat absorber can increase the thermal efficiency factor with a certain change in the angle of inclination and the density of solar radiation. A nomogram was also developed that determines the dependence of this coefficient on the angles of arrival of solar radiation and its density.

Patel, K., Patel, P., & Patel, J. (2012). Review of solar water heating systems. International Journal of Advanced Engineering Technology, 3(4), 146-149.
Kalogirou, S. A., & Tripanagnostopoulos, Y. (2006). Hybrid PV/T solar systems for domestic hot water and electricity production. Energy conversion and management, 47(18-19), 3368-3382. https://www.researchgate.net/publication/238741144
https://doi.org/10.1016/j.enconman.2006.01.012
Chen, L., Zhang, YF., Liu, WJ., Yin, JH. (2013). Discussions on Integration Designs of Solar Collectors and Building Envelopes. In: Chen, F., Liu, Y., Hua, G. (eds) LTLGB 2012. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34651-4_122
https://doi.org/10.1007/978-3-642-34651-4_122
Ricci, M., Sdringola, P., Tamburrino, S., Puglisi, G., Di Donato, E., Ancona, M. A., & Melino, F. (2022). Efficient district heating in a decarbonisation perspective: A case study in italy. Energies, 15(3) doi:10.3390/en15030948. https://doi.org/10.3390/en15030948
https://doi.org/10.3390/en15030948
Ivashkiv, I., & Trukhan, L. (2019). Development of alternative fuel sources in Ukraine. Economic Analysis, 29(1). http://dx.doi.org/10.35774/econa2019.01.178
https://doi.org/10.35774/econa2019.01.178
Arvizu, D., Balaya, P., Cabeza, L., Hollands, K., Jäger-Waldau, A., Kondo, M., Konseibo, C., Meleshko, V., Stein, W., Tamaura, Y., Xu, H., Zilles, R., ... Weyers, P. (2012). Direct Solar Energy. DOI:10.1017/CBO9781139151153.007.
https://doi.org/10.1017/CBO9781139151153.007
Priymak, О., Basok, B., Pasichnyk, P., & Goncharuk, S. (2022). Use of flexible electric heaters for air solar. Thermophysics and Thermal Power Engineering, 47(4), 75-80. Retrieved from https://ihe.nas.gov.ua/index.php/journal/article/view/515
Davidenko, Y.P. (2016). Passive Use of Solar Energy in Architectural Forms. Energy Efficiency in Construction and Architecture, 8, 107-112. http://science.knuba.edu.ua/source/vydannya/energoefektyvnist/energoefek...
He, Y.-L., Qiu, Y., Wang, K., Yuan, F., Wang, W.-Q., Li, M.-J., & Guo, J.-Q. (2020). Perspective of concentrating solar power. Energy, 198, 117373. https://doi.org/10.1016/j.energy.2020.117373.
https://doi.org/10.1016/j.energy.2020.117373
Zhelykh, V,Venhryn,I., Kozak,K. & Shapoval,S.(2020). Solar collectors integrated into transparent facades. Production Engineering Archives,26(3) 84-87.  https://doi.org/10.30657/pea.2020.26.17.
https://doi.org/10.30657/pea.2020.26.17
Venhryn, І., Shapoval S., Kasynets M., Piznak B. Thermal efficiency analysis of solar heat supply unit combined with glass facade of building. Energy Engineering and Control Systems, 2020, Vol. 6, No. 1, pp. 1 - 6. https://doi.org/10.23939/jeecs2020.01.001
https://doi.org/10.23939/jeecs2020.01.001
 Ulewicz, M., Zhelykh, V., Kozak, K., Furdas, Y.: Application of thermosiphon solar collectors for ventilation of premises. In: Blikharskyy, Z., Koszelnik, P., Mesaros, P. (eds.) Proceedings of CEE 2019: Advances in Resource-saving Technologies and Materials in Civil and Environmental Engineering, pp. 180-187. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-27011-7_23
https://doi.org/10.1007/978-3-030-27011-7_23
Goel, M., Verma, V.S., Tripathi, N.G. (2022). Solar Collectors and Low-Temperature Solar Energy for Homes. In: Solar Energy. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-2099-8_6
https://doi.org/10.1007/978-981-19-2099-8_6
Doroshenko, A. V., & Khalak, V. F. (2018). Solar Polymer Liquid Collectors: Analysis of Existing Results, New Solutions Refrigeration Engineering and Technology, 54(5), 44-52. https://doi.org/10.15673/ret.v54i5.1250
https://doi.org/10.15673/ret.v54i5.1250
Kasynets, M., Kuznetsova, M., Sukholova, I., & Datsko, O. (2021). Improving the Efficiency of Solar Collector Systems. Молодий вчений, 6(94), 100-103. https://doi.org/10.32839/2304-5809/2021-6-94-22
https://doi.org/10.32839/2304-5809/2021-6-94-22
Venhryn, I. (2019). Research on Solar Collectors Integrated into the Glass Façade Construction of Buildings/Structures: Necessity and Specifics. Theory and Building Practice, 1(1), 38-46. https://doi.org/10.23939/jtbp2019.01.038
https://doi.org/10.23939/jtbp2019.01.038