METHOD OF ARRANGEMENT OF INTERNAL THERMAL INSULATION OF EXTERNAL PROTECTIVE STRUCTURES OF THE ROOM

2023;
: 18-26
https://doi.org/10.23939/jtbp2023.02.018
Received: August 01, 2023
Revised: September 29, 2023
Accepted: November 03, 2023
1
Lviv Polytechnic National University
2
Separate structural subdivision «Technical and Economic Professional College of Lviv Polytechnic National University»

The paper presents the results of a study aimed at increasing energy efficiency in residential buildings, as well as an analysis of the humidity state and the possibility of condensation when using internal insulation. Numerical simulations were performed to confirm the results. The obtained results indicate that the use of mineral insulation "BETOL®" and aluminum foil used as a vapor barrier, applied from the inside, contributes to the improvement of thermal insulation of the walls and reduces the risks of condensation.

Computer modeling showed that under the formed conditions, condensation is not observed. This research has an important contribution to the development of energy-efficient solutions for the construction industry, as it allows to ensure the minimum permissible value of heat transfer resistance of external enclosures, to extend their service life.

Ageeva, H. M. (2013). Analysis of constructive solutions for the insulation of a residential building. Energy saving. Power engineering. Energy audit, 11, 30-34. Retrieved from: http://nbuv.gov.ua/UJRN/ecee 2013 11 5
Basińska, M., Kaczorek, D. & Koczyk, H. (2021). Economic and Energy Analysis of Building Retrofitting Using Internal Insulations. Energies. doi: 10.3390/en14092446
https://doi.org/10.3390/en14092446
Dudar, N. I., Shvets, V. V., Maksimenko, M. A. (2022). Operation of heaters with non-ventilated air layers and energy-reflecting screens. Scientific and technical journal: Modern technologies, materials and structures in construction. 2, 6-11. doi: 10.31649/2311-1429-2022-2-6-11
https://doi.org/10.31649/2311-1429-2022-2-6-11
Dvorkin, L.Y., Lapovska, S.D. (2016). Building materials science: a textbook. Rivne: NUVPG, 448. Retrieved from: https://ep3.nuwm.edu.ua/4741/1/V55.pdf
Hayduk, O.V., Herlyand, T.M., Kulalayeva, N.V., Pivtoratska, N.V., Pyatnychuk, T.V. (2021). Technologies of insulation of building facades: a textbook. Zhytomyr: Polissya, 362. doi: 10.32835/978-617-8117-00-9/2021
Ivolzhatova, N., Drimko, T., Holevan, T. and others. (2020). Advanced systems of thermal modernization of buildings and structures: training. manual Kyiv: Helvetic Publishing House, 116. Retrieved from: http://surl.li/hatwg
Krause, P., Nowoświat, A., Pawłowski, K. (2020). The Impact of Internal Insulation on Heat Transport through the Wall: Case Stud. Applied Sciences. Retrieved from https://www.mdpi.com/2076-3417/10/21/7484
https://doi.org/10.3390/app10217484
Maistrenko, A. A., Amelina, N.O., Berdnyk, O.Y., Ryzhankova, L.M., Yakovleva O.M. (2020). Technological analysis of the choice of the external wall insulation system. Scientific bulletin of construction. 1. doi: 10.29295/2311-7257-2020-99-1-110-124
Paraschiv, L., Paraschiv, S., Ion, V. (2017). Increasing the energy efficiency of buildings by thermal insulation. Energy Procedia. doi:10.1016/j.egypro.2017.09.044
https://doi.org/10.1016/j.egypro.2017.09.044
Shvets, V.V., Maksymenko, M.A., Kozak, V.Yu. (2019). Modeling the passage of heat flow through foil thermopanels by the method of correlation-regression analysis. Modern technologies, materials and structures in construction. 1, 72-77. doi: 10.31649/2311-1429-2019-1-72-77
https://doi.org/10.31649/2311-1429-2019-1-70-77
Tsykh, V. S. (2019). Analysis of the main characteristics of insulating materials for the enclosing structures of buildings: materials of the III International science and practice conference, April 3-5 2019, Ivano-Frankivsk. Retrieved from: http://repository.vsau.org/getfile.php/28120.pdf p.168
Herlyand, T. M. Kulalayeva, N. V. Pivtoratska, N. V. Pyatnychuk. T. V. (2021). Building facade insulation technologies - Zhytomyr: Polissya. doi:  10.32835/978-617-8117-00-9/2021
Bursa, Nilüfer/Turkey Example (2017). Importance of Heat Insulation for Creating Energy Efficiency in Current Buildings:  Filiz Senkal Sezer, European Journal of Sustainable Development. 6, 2, 57-68  doi: 10.14207/ejsd.2017.v6n2p57
https://doi.org/10.14207/ejsd.2017.v6n2p57
Orzechowski, T. Orzechowski, М. (2017).Energy savings due to building insulation of different thickness. - Energy 01030, №7 doi: 10.1051/e3sconf/20171401030
https://doi.org/10.1051/e3sconf/20171401030
Aditya, L. & Mahlia, T.M.I. & Rismanchi, B. & Ng, H.M. & Hasan, M.H. & Metselaar, H.S.C. & Muraza, Oki & Aditiya, H.B, (2017). A review on insulation materials for energy conservation in buildings. Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), doi: 10.1016/j.rser.2017.02.034
https://doi.org/10.1016/j.rser.2017.02.034
Guo, S. Wang, W. Zhou, Y. (2022). Research on Energy Saving and Economy of Old Buildings Based on Parametric Design: A Case Study of a Hospital in Linyi City, Shandong Province, Sustainability. 14,16681. doi: 10.3390/su142416681
https://doi.org/10.3390/su142416681
Sola, A. Corchero, C. Salom, J. Sanmarti, M. (2018). Simulation tools to build urban-scale energy models: A review Energies, 11, 3269. doi: 10.3390/en11123269
https://doi.org/10.3390/en11123269
Monien, D. Strzalka, A. Koukofikis, A. Coors, V. Eicker, U. (2017). Comparison of building modelling assumptions and methods for urban scale heat demand forecasting. Future Cities Environ. 3, 2 doi: 10.1186/s40984-017-0025-7
https://doi.org/10.1186/s40984-017-0025-7
Romanova, І. (2018). The selecting of building insulation material by the analytic hierarchy process. IOP Conference Series: Materials Science and Engineering, Volume 365, Issue 3 doi: 10.1088/1757-899X/365/3/032016
https://doi.org/10.1088/1757-899X/365/3/032016
Romanova, І. (2022). The impact of efficient insulation on thermal performance of building elements in hot arid region. Renew. Energy Environ. Sustain. Volume 7. doi: 10.1051/rees/2021050
https://doi.org/10.1051/rees/2021050