INFLUENCE OF TECHNOLOGICAL FACTORS ON CONCRETE EFFICIENCY INDICATORS

2024;
: 86-91
https://doi.org/10.23939/jtbp2024.01.086
Received: March 07, 2024
Revised: April 05, 2024
Accepted: May 02, 2024
1
Lviv Polytechnic National University, Department of building production
2
Ukrcement Association
3
Lviv Polytechnic National University, Department of Building Production
4
Lviv Polytechnic National University, Department of Building Production

The article presents the results of studies of the influence of technological factors (clinker factor of cements, grain composition of aggregates, cement consumption in concrete, modifier additives) on technical and environmental indicators of concrete efficiency. It has been shown that in combination, the parameters of clinker and CO2 intensities characterize the clinker efficiency of concrete, which can be improved by replacing part of the clinker in mixed cements with active mineral additives.  Optimization of the granulometric composition of fine and coarse aggregates and the use of superplasticizers of the polycarboxylate type ensure the formation of a dense microstructure of the cementing matrix, which allows to increase the strength of concrete by 1-2 classes with an unchanged cement consumption and helps to reduce the CO2 emission rate. With the correct combination of various technological factors affecting concrete mixtures, a real opportunity is created to produce modern low-carbon concrete that meets the requirements of sustainability

The European Green Deal. (2020). Available online: https://eur‐lex.europa.eu.
Borg R. P., Hajek P., & Fernandez-Ordonez D. (2018). Sustainable Concrete: Materials and Structures. IOP Conf. Series: Materials Science and Engineering. 442, 011001. doi:10.1088/1757-899X/442/1/011001.
https://doi.org/10.1088/1757-899X/442/1/011001
Sabbie A., Vanderley M., Sergio A., & Arpad H. (2017). Carbon dioxide reduction potential in the global cement industry by 2050. Cement and Concrete Research, 114. 115-124. https://doi.org/10.1016/j.cemconres.2017.08.026
https://doi.org/10.1016/j.cemconres.2017.08.026
Feiz R., Ammenberg J., Baas L., Eklund M., Helgstrand A., & Marshall R. (2014). Improving the CO2 performance of cement, part I: utilizing life-cycle assessment and key performance indicators to assess development within the cement industry. Journal of Cleaner Production, 1-10. http://dx.doi.org/10.1016/j.jclepro.2014.01.083
https://doi.org/10.1016/j.jclepro.2014.01.083
Promise D. Nukah, Samuel J. Abbey, & Colin A. (2022). Evaluation of the Structural Performance of Low Carbon Concrete. Sustainability, 14, 16765. https://doi.org/10.3390/su142416765
https://doi.org/10.3390/su142416765
Javadabadi M. T., Kristiansen D. De L., Redie M. B., & Baghban M. H. (2019). Sustainable Concrete: A Review. International Journal of Structural and Civil Engineering Research. 8, 2. doi: 10.18178/ijscer.8.2.126-132.
https://doi.org/10.18178/ijscer.8.2.126-132
De Grazia M.T.,  Sanchez L.F.M., & Yahia A. (2023). Towards the design of eco-efficient concrete mixtures: An overview. Journal of Cleaner Production, 389, 135752. https://doi.org/10.1016/j.jclepro.2022.135752
https://doi.org/10.1016/j.jclepro.2022.135752
Althoey, Ansari W. S., Sufian M., & Deifalla A. F. (2023). Advancements in low-carbon concrete as a construction material for the sustainable built environment. Developments in the Built Environment. 16(9), 100284. https://doi.org/10.1016/j.dibe.2023.100284
https://doi.org/10.1016/j.dibe.2023.100284
Giergiczny Z., Król A., Tałaj M., & Wandoch K. (2020). Performance of Concrete with Low CO2 Emission. Energies, 13, 4328; doi:10.3390/en13174328
https://doi.org/10.3390/en13174328
Damineli B.L., Kemeid F.M., Aguiar P.S., & John V.M. (2010). Measuring the eco-efficiency of cement use, Cem. Concr. Compos. 32, 555-562. https://doi.org/10.1016/j.cemconcomp.2010.07.009
https://doi.org/10.1016/j.cemconcomp.2010.07.009
Scrivener K.L., & Gartner E.M. (2018). Eco‐efficient cements: potential economically viable solutions for a low‐CO2 cement‐based materials industry. Cem. Concr. Res., 114, 2-26.
https://doi.org/10.1016/j.cemconres.2018.03.015
https://wedocs.unep.org/20.500.11822/25281
Sanytsky M.A., Kropyvnytska T.P., & Heviuk I.M. (2021). Rapid-hardening clinker-effective cements and concretes: monograph, 206 р. ISBN 978-617-8055-16-5
          Corinaldesi V., Moriconi G. (2012). Environmentally-friendly concretes for sustainable building. WIT Transactions on Ecology and The Environment, Vol 155. https:// doi:10.2495/SC120952
https://doi.org/10.2495/SC120952
          Takuma Watari, Zhi Cao, Sho Hata, Keisuke Nansai. (2022).  Efficient use of cement and concrete to reduce reliance on supply-side technologies for net-zero emissions. NATURE COMMUNICATIONS, 13:4158. https://doi.org/10.1038/s41467-022-31806-2
https://doi.org/10.1038/s41467-022-31806-2
EN 206:2013. Concrete Specification, Performance, Production and Conformity. CEN: Brussels, Belgium. https://standards.iteh.ai/catalog/standards/cen/0e839092-9d2c-4b1c-ada2-...
Sanytsky M., Kropyvnytska T., Geviuk I., Makovijchuk M., & Kripka L. (2023). Performance of concretes with a low carbon footprint containing multi-component mineral additives. XII Konferencja  DNI BETONU 2023, 783-795. https://www.dnibetonu.com/wp-content/pdfs/2023/Sanytsky_i%20inni.pdf
Kropyvnytska T., Sanytsky M., Heviuk I., Kripka L. (2022). Study of the properties of low-carbon Portland-composite cements CEM II/C-M. Lecture Notes in Civil Engineeringthis Proceedings of EcoComfort 2022. 290, 230-237. https://doi.org/10. 10.1007/978-3-031-14141-6_22
https://doi.org/10.1007/978-3-031-14141-6_22