The results of an analytical review of a large number of publications on the problem of improving the efficiency of thermoelectric generators (TEG) over the past decade are presented. An analysis of historical data on the thermodynamic justification of the efficiency of thermoelectric generators is presented. The following areas are analyzed: the problem of increasing the figure of merit Z through the creation of new material science technologies and new materials, the creation of multi-segment thermoelectric elements for a wide temperature range (300 ÷ 1200 K), the efficiency of heat supply to the TEG and cooling. The methods for calculating the thermodynamic efficiency of TEG are presented. It is shown that the efficiency of TEG is limited to ½ of the Carnot value for ZT values of 1-3. Modern materials allow the production of TEG with ZT values less than 1. However, the application of TEG has promising prospects with the increase in the intensity of heat supply and cooling processes. The main directions and trends (physical, chemical, technological) in the creation and improvement of TEG are identified. Some practical solutions presented in the literature, as well as the authors' solution for improving the thermodynamic efficiency of boiler units using TEG, are shown.
Clausius, R. (1867). The Mechanical Theory of Heat, With its Applications to the Steam-Engine and Physical Properties of Bodies. London, UK: John Van Voorst.
Clausius, R. (1879). The Mechanical Theory of Heat. London: Macmilan.
Thomson, W. (1857). On a mechanical theory of thermo-electric currents. Edinb.: Proc. R. Soc,. 3.
Thomson, W. (1856) On the dynamical theory of heat – Part VI. Thermoelectric currents. Loud. Edinb. Dublin Philos. Mag. J. Sci. 11.
Xue, T.-W., Guo, Z.-Y. (2023). Thermoelectric Cycle and the Second Law of Thermodynamics. Entropy, 25(1), 155. https://doi.org/10.3390/e25010155
Zhao, Y., Li, W., Zhao, X., Wang, Y., Luo, D., Li, Y., Ge, M. (2024). Energy and exergy analysis of a thermoelectric generator system for automotive exhaust waste heat recovery. Applied Thermal Engineering, vol. 239, https://doi.org/10.1016/j.applthermaleng.2023.122180
Tohidi, F., Holagh, S., Chitsaz, A., (2022). Thermoelectric Generators: A comprehensive review of characteristics andapplications. Applied Thermal Engineering. vol. 201, Part A. https://doi.org/10.1016/j.applthermaleng.2021.117793
Lupu, A., Homutescu, V., Balanescu, D., Popescu, A., (2018). Efficiency of solar collectors – a review. The 8th International Conference on Advanced Concepts in Mechanical Engineering. https://iopscience.iop.org/article/10.1088/1757-899X/444/8/082015
Samoylovich, A., Korenblit, L. (1953). .Modern state of the theory of thermoelectric and thermomagnetic phenomena in semiconductors. UFN. 49, № 2, pp. 243–272.
Samoylovich, A., Korenblit, L. (1953). Modern state of the theory of thermoelectric and thermomagnetic phenomena in semiconductors. UFN. 49, № 3, pp. 337–383.
Shafey, H., Ismail, I. (1990). Thermodynamics of the Conversion of Solar Radiation. J. Sol. Energy Eng., 112(2), pp. 140-145. https://doi.org/10.1115/1.2929646
Smets, A., Jager, K., Isabella, O., Swaaij, R., Zeman, M. (2016). Solar Energy: The physics and engineering of photovoltaic conversion, technologies and systems. England: UIT Cambridge Ltd.
Rosa, A. (2012). Fundamentals of Renewable Energy Processes (3rd ed.). Academic Press.
Goldsmid, H. (2010). Introduction to Thermoelectricity. Berlin: Springer.
Kondepudi, D., Prigogine, I. (1998). Modern Thermodynamics. From Heat Engines to Dissipative Structures. Hoboken, NJ, USA: John Wiley and Sons.
Bergman, T., Lavine, A., Incopera, F., DeWitt, D. (2011). Introduction to Heat Transfer. (6th ed.). NJ: John Wiley & Sons.
Zebarjadi, M. (2015). Electronic cooling using thermoelectric devices. Appl. Phys. Lett. 106. 203506 https://doi.org/10.1063/1.4921457
Nolas, G., Sharp, J., Goldsmid, J. (2001). Thermoelectrics. Basic Principles and New Materials Developments. New York: Springer-Verlag.
Anatichuk, L. (1979). Termoelementy i termoelektrichni prylady: Spravochnik. Thermal elements and thermal and electrical apparatus. Reference book. K. : Naukova Dumka.
Anatichuk, L., Mocherniuk, Y., Prybyla, A. (2013). Solar thermoelectrical convertors. Termoelektryka, № 4, pp. 72–79.
Champier, D. (2017). Thermoelectric generators: A review of applications. Energy Conversion and Management, 140, pp. 167-181. https://doi.org/10.1016/j.enconman.2017.02.070
Shi, XL., Zou, J., Chen, ZG. (2020). Advanced Thermoelectric Design: From Materials and Structures to Devices. Chem. Rev., 120 (15), pp. 7399–7515. https://doi.org/10.1021/acs.chemrev.0c00026
Gupta, M., Kaushik, S., Ranjan, K., Panwar, N., Reddy, V., Tyagi, S. (2015). Thermodynamic performance evaluation of solar and other thermal power generation systems: A review. Renewable and Sustainable Energy Reviews, 50, pp. 567-582. https://doi.org/10.1016/j.rser.2015.05.034
Freire, L., Navarette, L., Corrales, B., Castillo, J. (2021). Efficiency in thermoelectric generators based on Peltier cells. Energy Reports, 7(3), pp. 355-361. https://doi.org/10.1016/j.egyr.2021.08.099
Bayrak, F., Abu-Hamdeh, N., Alnefaie, K., Öztop, H. (2017). A review on exergy analysis of solar electricity production. Renewable and Sustainable Energy Reviews, 74, pp. 755-770. https://doi.org/10.1016/j.rser.2017.03.012
Rawat, R., Lamba, R., Kaushik, S. (2017). Thermodynamic study of solar photovoltaic energy conversion: An overview. Renewable and Sustainable Energy Reviews, 71, pp.630-638. https://doi.org/10.1016/j.rser.2016.12.089
De Vos, A., Pauwels, H. (1981). On the thermodynamic limit of photovoltaic energy conversion. Applied physics, 25. pp. 119-125. https://doi.org/10.1007/BF00901283
Xiao, H. (2024). Derivation of generalized thermoelectric energy equations and the study of thermoelectric irreversible processes based on energy, exergy, and entransy analysis. Energy Science & Engineering, 12 (1), 39-51. https://doi.org/10.1002/ese3.161
Tiwari, G., Dubey, S. (2010). Fundamentals of Photovoltaic Modules and Their Applications. Cambridge, UK: RSC Publishers.
Beretta, D., Neophytou, N., Hodges, J., Kanatzidis, M., Narducci, D., Martin-Gonzalez, M., Beekman, M., Balke, B., Cerretti, G.,Tremel, W., Zevalkink, A., Hofmann, A., Müller, C., Dörling, B., Campoy-Quiles, M., Caironi, M. (2019). Thermoelectrics: From history, a window to the future. Materials Science and Engineering: R: Reports, 138. https://doi.org/10.1016/j.mser.2018.09.001
Smets, A., Jäger, K., Isabella, O., Swaaij, R., Zeman, M. (2016). Solar Energy: The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems. England: UIT Cambridge.
Gribik, J., Osterle, J. (1984). The Second Law Efficiency of Solar Energy Conversion. J. Sol. Energy Eng., 106(1), pp. 16-21. https://doi.org/10.1115/1.3267555
Jeter, S. (1981). Maximum conversion efficiency for the utilization of direct solar radiation. Solar Energy, 26(3), pp. 231-236. https://doi.org/10.1016/0038-092X(81)90207-3
Petela, R. (1964). Exergy of Heat Radiation. J. Heat Transfer, 86(2), pp. 187-192. https://doi.org/10.1115/1.3687092
Landsberg, P. (1977). A Note on the Thermodynamics of Energy Conversion in Plants. Photochemistry and Photobiology, 26(3), pp. 313-314. https://doi.org/10.1111/j.1751-1097.1977.tb07491.x
Alsaghir, A., Bahk, J. (2023). Performance Optimization and Exergy Analysis of Thermoelectric Heat Recovery System for Gas Turbine Power Plants. Entropy 2023, 25(12), 1583. https://doi.org/10.3390/e25121583
Dmitriev, A., Zvyagin, I. (2010). Current trends in the physics of thermoelectric materials. Phys.-Usp., 53(8), pp. 789-803. https://iopscience.iop.org/article/10.3367/UFNe.0180.201008b.0821
Telkes, M. (1947). The Efficiency of the Thermoelectric Generators – I. J. Appl. Phys. 18, pp. 1116-1127
Ioffe, A. (1957). Semiconductor Thermoelements, and Thermoelectric Cooling, London: Infosearch Lim.
Zhou, Y., Zhang, T., Wang, F., Yu, Y. (2018). Performance analysis of a novel thermoelectric assisted indirect evaporative cooling system. Energy, 162, pp. 299-308. https://doi.org/10.1016/j.energy.2018.08.013
Liu, Z., Zhang, Y., Zhang, L., Luo, Y., Wu, Z., Wu, J., Yin, Y., Hou, G. (2018). Modeling and simulation of a photovoltaic thermal-compound thermoelectric ventilator system. Applied Energy, 228, pp. 1887-1900. https://doi.org/10.1016/j.apenergy.2018.07.006
Liu, Z., Zhang, L., Gong, G. (2014). Experimental evaluation of a solar thermoelectric cooled ceiling combined with displacement ventilation system. Energy Conversion and Management, 87, pp. 559-565. https://doi.org/10.1016/j.enconman.2014.07.051
Baru, S., Bhatia, S. (2020). A review on thermoelectric cooling technology and its applications. IOP Conf. Ser.: Mater. Sci. Eng., 912(042004). https://iopscience.iop.org/article/10.1088/1757-899X/912/4/042004
Sripadmanabhan Indira, S., Vaithilingam, C., Chong, K., Saidur, R., Faizal, M., Abubakar, S., Paiman, S. (2020). A review on various configurations of hybrid concentrator photovoltaic and thermoelectric generator system. Solar Energy, 201, pp. 122-148. https://doi.org/10.1016/j.solener.2020.02.090
Babu, C., Ponnambalam, P. (2017). The role of thermoelectric generators in the hybrid PV/T systems: A review. Energy Conversion and Management, 151, pp. 368-385. https://doi.org/10.1016/j.enconman.2017.08.060
Chang, Y., Chang, C., Ke, M., Chen, S. (2009). Thermoelectric air-cooling module for electronic devices. Applied Thermal Engineering, 29(13), pp. 2731-2737. https://doi.org/10.1016/j.applthermaleng.2009.01.004
Thilak Raj, N., Iniyan, S., Goic, R. (2011). A review of renewable energy based cogeneration technologies. Renewable and Sustainable Energy Reviews, 15(8), pp. 3640-3648. https://doi.org/10.1016/j.rser.2011.06.003
Bell, L. (2008). Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science, 321(5895), pp. 1457-1461. https://www.science.org/doi/10.1126/science.1158899