PROPERTIES OF MONOLITHIC CEMENT CONCRETE, HARDENING AT TEMPERATURES CLOSE TO ZERO

2024;
: 102-110
Received: September 29, 2024
Revised: October 26, 2024
Accepted: November 01, 2024
1
Kharkov National Automobile and Highway University
2
LLC “RS Engeneering”

One of the main problems of hardening monolithic cement concrete, especially in the conditions of restoration and reconstruction of various objects, is the hardening of concrete in conditions of negative temperatures. Winter concreting technologies are divided into two main methods: the thermos method, in which the temperature of the environment in which the concrete hardens, must be above zero degrees Celsius, or the use of antifreeze additives. In the last case, it is advisable to introduce antifreeze chemical additives into the concrete composition, which lower the freezing temperature of water in concrete. However, previously conducted studies are known that show that even in the case of early freezing of concrete, its quality remains high. In this case, it is necessary that the beginning of setting of the cement paste occurs before the concrete can freeze. In addition, it has been suggested that concrete hardening at low temperatures can occur without using the thermos method. The article presents the results of the influence of hardening temperature on the setting time of cement paste. It is shown how hardening conditions affect on the strength and frost resistance of concrete.

Gnatov, A., Argun, S., & Rudenko, N. (2017, May). Smart road as a complex system of electric power generation. In 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON) (pp. 457-461). IEEE. https://doi.org/10.1109/UKRCON.2017.8100531

Shpynova, G. & dr. (1985). Betony dly stroitelnyh rabot v zimnih usloviah. Lvov: LGU. (in Russian). Retrieved from Скачать Шпынова Л.Г. (ред.). Бетоны для строительных работ в зимних условиях [DJVU] - Все для студента

Usherov-Marshak, A., Zlatkovski, O., & Sopov, V. (2002). Calorimetric study of frost attack during cement hardening. Journal of thermal analysis and calorimetry68, 223-230. https://doi.org/10.1023/A:1014917601533

Rixom, M. R. (1978). Chemical Admixtures for Concrete, London: E. & FN Spon Ltd. https://doi.org/10.4324/9780203017241

Brzozowski, P., Horszczaruk, E., & Hrabiuk, K. (2017). The influence of natural and nano-additives on early strength of cement mortars. Procedia Engineering172, 127-134. https://doi.org/10.1016/j.proeng.2017.02.034

Müller, H. S., Djuric, Z., & Haist, M. (2018). Modelling freeze-thaw damage of concrete based on spatially resolved measurements of frost-induced moisture transport. 20. Internationale Baustofftagung-ibausil, Weimar, 1-47. Retrieved from H.S. Müller, Z. Djuric, M. Haist, Modelling freeze-thaw... - Google Академія

Oguchi, C. T., & Yu, S. (2021). A review of theoretical salt weathering studies for stone heritage. Progress in Earth and Planetary Science8(1), 32. https://doi.org/10.1186/s40645-021-00414-x

Ioannidou, K., Del Gado, E., Ulm, F. J., & Pellenq, R. (2017, March). Failure of cement hydrates: freeze-thaw and fracture. In APS March Meeting Abstracts (Vol. 2017, pp. P18-008). Retrieved from Failure of cement hydrates: freeze-thaw and fracture - Astrophysics Data System

Kind, V. M., Werneck, C., Müller, M., Unbehau, S., Ludwig, H. M., & Dehn, F. (2023). Spatially resolved analysis of the progression of freeze‐thaw damage in concrete. ce/papers6(6), 1214-1222. https://doi.org/10.1002/cepa.2971

 Kireenko, I. (1919) Betonnye raboty na morose. Кiiv: Ukr. nar. Komisariata zemledelia (in Russian). Retrieved from И.А. Кириенко. Бетонные работы на морозе. С 37 рисунками и 42 таблицами в тексте. Киев, Нар. комиссариат земледелия, 1919 г. 124 с., илл. Мягкий переплет, немного увелич. формат. Загрязнение обложки. | Аделанта

Zhang, R., Liu, P., Ma, L., Yang, Z., Chen, H., Zhu, H. X., & Li, J. (2020). Research on the corrosion/permeability/frost resistance of concrete by experimental and microscopic mechanisms under different water–binder ratios. International Journal of Concrete Structures and Materials14, 1-11. https://doi.org/10.1186/s40069-019-0382-8

Collepardi, M. (2005). Admixtures: Enhancing concrete performance. In Admixtures-Enhancing Concrete Performance: Proceedings of the International Conference held at the University of Dundee, Scotland, UK on 6 July 2005 (pp. 217-230). Retrieved from Thomas Telford Publishing. ADMIXTURES: ENHANCING CONCRETE PERFORMANCE | Admixtures - Enhancing Concrete Performance

Łaźniewska-Piekarczyk, B., Miera, P., & Szwabowski, J. (2017, October). Plasticizer and superplasticizer compatibility with cement with synthetic and natural air-entraining admixtures. In IOP conference series: materials science and engineering (Vol. 245, No. 3, p. 032094). IOP Publishing. https://doi.org/10.1088/1757-899X/245/3/032094

Trofimov, B. Y., Kramar, L. Y., & Schuldyakov, K. V. (2017, November). On deterioration mechanism of concrete exposed to freeze-thaw cycles. In IOP Conference Series: Materials Science and Engineering (Vol. 262, No. 1, p. 012019). IOP Publishing. https://doi.org/10.1088/1757-899X/262/1/012019

 Tolmachov, S. (2020). Research of the reasons of frost destruction of road concrete. Key Engineering Materials864, 175-179. https://doi.org/10.4028/www.scientific.net/KEM.864.175

Powers, T. C. (1965). The mechanism of frost action in concrete. Retrieved from THE MECHANISM OF FROST ACTION IN CONCRETE - TRID

Moukwa, M. (1990). Deterioration of concrete in cold sea waters. Cement and Concrete Research20(3), 439-446. https://doi.org/10.1016/0008-8846(90)90034-U

 Zhang, M., Yang, L. M., Guo, J. J., Liu, W. L., & Chen, H. L. (2018). Mechanical properties and service life prediction of modified concrete attacked by sulfate corrosion. Advances in Civil Engineering2018(1), 8907363. Retrieved from Mechanical Properties and Service Life Prediction of Modified Concrete Attacked by Sulfate Corrosion - Zhang - 2018 - Advances in Civil Engineering - Wiley Online Library

 Tolmachov, S. (2020). Research of the reasons of frost destruction of road concrete. Key Engineering Materials864, 175-179. https://doi.org/10.4028/www.scientific.net/KEM.864.175

DSTU 8858:2019 Sumishi tsementobetonni dorozhniye ta tsementobeton dorozhniy. Tehnichni umovi. Kyiv, DP «UkrNDNC» (2020). Retrieved from ДСТУ 8858:2019 Суміші цементобетонні дорожні та цементобетон дорожній. Технічні умови