IMPROVING THE EFFICIENCY OF AIR DISTRIBUTION IN A ROOM WITH A LINEAR SLOT DIFFUSER

2025;
: 106-111
https://doi.org/10.23939/jtbp2025.01.106
Received: March 19, 2025
Revised: April 03, 2025
Accepted: May 02, 2025
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University, Department of Heat and Gas Supply and Ventilation
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University

The article investigates the improvement of air distribution efficiency in a room when using a linear diffuser as an air distribution device. Linear diffusers allow to provide comfortable conditions in the room.

The paper analyzes some characteristics of the air flow formed when using linear diffusers. The influence of the geometric parameters of the diffuser on the quality of the microclimate is considered, in particular, such characteristics as jet boundaries and velocity profiles in the jet cross-sections are considered. Numerical modeling allowed to determine the optimal operating modes of such diffusers and evaluate their efficiency.

Experimental studies confirmed that linear diffusers contribute to a more uniform distribution of supply air. The results obtained can be used to optimize and improve ventilation systems in buildings, which will contribute to increasing energy efficiency and reducing operating costs.

P. Kapalo, A. Sedláková, D. Košicanová, O. Voznyak, J. Lojkovics, and P. Siroczki (2014) "Effect of ventilation on indoor environmental quality in buildings," in The 9th International Conference on Environmental Engineering, Selected Papers, Vilnius, Lithuania, May 22-23, СD 265. eISSN 2029-7092/eISBN 978-609-457-640-9
Voznyak, O., Savchenko, O., Spodyniuk, N., Sukholova, I., Kasynets, M., & Dovbush, O. (2022). Air distribution efficiency improving in the premises by rectangular air streams. Pollack Periodica, 17(3), 111-116. https://doi.org/10.1556/606.2021.00518
https://doi.org/10.1556/606.2021.00518
Myroniuk, K., Voznyak, O., Savchenko, O., Sukholova, I., Dovbush, O. (2024). Attenuation Coefficients of the Air Distributor with the Interaction of Opposing Non-coaxial Air Jets. In: Blikharskyy, Z., Zhelykh, V. (eds) Proceedings of EcoComfort 2024. EcoComfort 2024. Lecture Notes in Civil Engineering, vol 604. Springer, Cham. https://doi.org/10.1007/978-3-031-67576-8_35
https://doi.org/10.1007/978-3-031-67576-8_35
Borowski, M., Zwolińska, K., & Halibart, J. (2023). Air Distribution Assessment-Ventilation Systems with Different Types of Linear Diffusers. https://www.aivc.org/sites/default/files/1_C28.pdf
Voznyak O., Spodyniuk N., Yurkevych Yu., Sukholova I., Dovbush O. (2020) Enhancing efficiency of air distribution by swirled-compact air jets in the mine using the heat utilizators. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, No.5(179), р. 89 - 94 doi:10.33271/nvngu/2020-5/089
https://doi.org/10.33271/nvngu/2020-5/089
Jaszczur M., Branny M., Karch M., Borowski M. (2016). Experimental analysis of the velocity field of the air flowing through the swirl diffusers. J. Phys.: Conf. Ser. 745:1-9. DOI: 10.1088/1742-6596/745/3/032049.
https://doi.org/10.1088/1742-6596/745/3/032049
Sukholova, I., Voznyak, O., Myroniuk, K. (2011). Indoor air distribution and creation of a dynamic microclimate. Theory and Building Practice. (in Ukrainian). https://ena.lpnu.ua/handle/ntb/19456
Voznyak, O., Myroniuk, K., Spodyniuk, N., Sukholova, I., Dovbush, O., Kasynets, M. (2022). Air distribution in the room by swirl compact air jets at variable mode. Pollack Periodica 17(3), 117-122. http://dx.doi.org/10.1556/606.2022.00515
https://doi.org/10.1556/606.2022.00515
Voznyak O. (2020) Experiment Planning and Optimization of Solutions in Ventilation Technology. Monograph - Lviv: Lviv Polytechnic National University, 220 p. (in Ukrainian). ISBN: 978-966-553-982-7
Voznyak, O., Sukholova, I., Spodyniuk, N., Kasynets, M., Savchenko, O., Dovbush, O., & Datsko, O. (2023). Enhancing of ventilation efficiency of premise due to linear diffuser. Pollack Periodica, 18(2), 107-112. https://doi.org/10.1556/606.2023.00750
https://doi.org/10.1556/606.2023.00750
Janbakhsh, S., & Moshfegh B. (2014). Experimental investigation of a ventilation system based on wall confluent jets. Building and Environment, Vol. 80, 18-31. https://doi.org/10.1016/j.buildenv.2014.05.011.
https://doi.org/10.1016/j.buildenv.2014.05.011
Srebric, J., & Chen, Q. (2002). Simplified Numerical Models for Complex Air Supply Diffusers. HVAC&R Research, 8(3), 277-294. DOI: 10.1080/10789669.2002.10391442.
https://doi.org/10.1080/10789669.2002.10391442
Allmaras, S.R., Johnson, F.T., & Spalart, P.R. (2012). Modifications and clarifications for the implementation of the spalart-allmaras turbulence model ICCFD7-1902. 7th International Conference on Computational Fluid Dynamics, Hawaii. http://www.iccfd.org/iccfd7/assets/pdf/papers/ICCFD7-1902_paper.pdf
Dovhaliuk, V. et al. (2018). Simplified analysis of turbulence intensity in curvilinear wall jets. FME Transactions, 46, 177-182. doi.org/10.5937/fmet 1802177D.
https://doi.org/10.5937/fmet1802177D
Gumen, O. et al. (2017). Geometric analysis of turbulent macrostructure in jets laid on flat surfaces for turbulence intensity calculation. FME Transaction, 45, 236-242. doi:10.5937/fmet1702236G.
https://doi.org/10.5937/fmet1702236G