This paper presents the properties of fresh and hardened self-compacting concrete (SCC) containing supplementary cementitious materials, such as complex sulphoaluminosilicate additive based on the metakaolin and gypsum, fly-ash and limestone microfiller. If sufficient gypsum is present the main hydration products in unclinker part is a thin crystals of ettringite. Ettringite is formed by a topochemical reaction in a closed space at the beginning of the formation of the cement matrix, which ensures the compaction of SCC. This is one of the major causes of increasing of the early strength of SCC containing supplementary cementitious materials. The SCC containing supplementary cementitious materials are characterized by such properties as obtaining workability concrete mixtures (slump flow 650-730 mm), high viscosity (T50=5-13 s), high strength (58-95 MPa), low porosity, high reliability and durability of structures.
Blikharskyy, Y., Khmil, R., Selejdak, J., Katunský, D., Blikharskyy, Z. (2024). RC Beams with an middle phase of reinforcement damage. System safety: Human - Technical facilyty - Environmental, 6 (1), 184-191. Retrieved from: https://doi.org/10.2478/czoto-2024-0020.
https://doi.org/10.2478/czoto-2024-0020
Sanytsky, M., Usherov-Marshak, A., Marushchak, U. & Kabus, A. (2021). The effect of mechanical activation on the properties of hardened Portland Cement. Lecture Notes in Civil Engineering, 100, 378-384. Retrieved from: https://doi.org/10.1007/978-3-030-57340-9_46.
https://doi.org/10.1007/978-3-030-57340-9_46
Sanytsky, M., Kropyvnytska, T., Нeviuk, I., Sikora, P. & Braichenko, S. (2021). Development of rapid-hardening ultra-high strength cementitious composites using superzeolite and N-C-S-H-PCE alkaline nanomodifier. Eastern-European Journal of Enterprise Technologies, 5 (6 (113), 62-72. Retrieved from: https://doi.org/10.15587/1729-4061.2021.242813.
https://doi.org/10.15587/1729-4061.2021.242813
Sohail, M., Kahraman, R., Nuaimi, N., Gencturk, B. Alnahhal, W. (2021). Durability characteristics of high and ultra-high performance concretes. Journal of Building Engineering, 33, 101669. https://doi.org/10.1016/j.jobe.2020.101669.
https://doi.org/10.1016/j.jobe.2020.101669
Aicin, P. (2003). The durability characteristics of high performance concrete. Cement and Concrete Composites, 25 (4-5), 409-420. Retrieved from: https://doi.org/10.1016/S0958-9465(02)00081-1.
https://doi.org/10.1016/S0958-9465(02)00081-1
Jasiczak, J., Wdowska, A. & Rudnicki, T. (2008). Betony ultrawysokowartościowe, właściwości, technologie, zastosowanie: Stowarzyszenie Producentow Cementu, Krakow. Retrieved from: https://www.researchgate.net/publication/342720481_Betony_ultrawysokowar....
Switonski, A., Mrozik, L. Piekarski, P. (2004). Creating structure and properties of high performance concrete. University of Science and Technology in Bydgoszcz. https://depot.ceon.pl/bitstream/handle/123456789/12475/Creating%20struct....
Runova, R., Gots, V., Rudenko, I., Konstantynovskyi, O. & Lastivka, O. (2018). The efficiency of plasticizing surfactants in alkali-activated cement mortars and concretes. MATEC Web of Conferences 230, 03016. Retrieved from: https://doi.org/10.1051/matecconf/201823003016.
https://doi.org/10.1051/matecconf/201823003016
Sanytsky, M., Kropyvnytska, T., Vakhula, O. & Bobetsky, Y. (2024). Nanomodified ultra high-performance fiber reinforced cementitious composites with enhanced operational characteristics. Proceedings of CEE 2023, 438, 362-371. Retrieved from: https://doi.org/10.1007/978-3-031-44955-0_36.
https://doi.org/10.1007/978-3-031-44955-0_36
Nivin, P., Jędrzejewska, A., Varughese, A. & James, J. (2022). Influence of pore structure on corrosion resistance of high performance concrete containing metakaolin. Cement - Wapno - Beton, 27 (5), 302-319. Retrieved from: https://doi.org/10.32047/CWB.2022.27.5.1.
https://doi.org/10.32047/CWB.2022.27.5.1
Valcuende, M., Lliso-Ferrando, J., Ramón-Zamora, J. & Soto, J. (2021). Corrosion resistance of ultra-high performance fibre-reinforced concrete. Construction and Building Materials 306, 124914. Retrieved from: https://doi.org/10.1016/j.conbuildmat.2021.124914.
https://doi.org/10.1016/j.conbuildmat.2021.124914
Chousidis, N., Rakanta., E., Ioannou, I. & Batis, G. (2015). Mechanical properties and durability performance of reinforced concrete containing fly ash. Construction and Building Materials. 101, 810-817. Retrieved from: https://doi.org/10.1016/j.conbuildmat.2015.10.127.
https://doi.org/10.1016/j.conbuildmat.2015.10.127
Haufe, J., Vollpracht, A. & Matschei, T. (2021). Performance test for sulfate resistance of concrete by tensile strength measurements: Determination of test criteria. Crystals, 11 (9), 1018. Retrieved from: https://doi.org/10.3390/cryst11091018.
https://doi.org/10.3390/cryst11091018
Krivenko, P., Petropavlovskyi, O. & Kovalchuk, O. (2018). A comparative study on the influence of metakaolin and kaolin additives on properties and structure of the alkali activated slag cement and concrete. Eastern-European Journal of Enterprise Technologies, 6 (91), 33-39. Retrieved from: https://doi.org/10.15587/1729-4061.2018.119624.
https://doi.org/10.15587/1729-4061.2018.119624
Sanytsky, M., Rusyn, B., Kirakevych, I. & Kaminskyy, A. (2023). Architectural self-compacting concrete based on nano-modified cementitious systems. International Conference Current Issues of Civil and Environmental Engineering Lviv - Košice - Rzeszów. Proceedings of CEE, 372-380. Retrieved from: https://doi.org/10.1007/978-3-031-44955-0_37.
https://doi.org/10.1007/978-3-031-44955-0_37
Borziak, O., Plugin, A., Chepurna, S., Zavalniy, O. & Dudin, O. (2019). The effect of added finely dispersed calcite on the corrosion resistance of cement compositions. IOP Conf. Series: Materials Science and Engineering, 708, 012080. doi: 10.1088/1757-899X/708/1/012080.
https://doi.org/10.1088/1757-899X/708/1/012080
Kropyvnytska, T., Sanytsky, M., Rucińska, T., & Rykhlitska, O. (2019). Development of nanomodified rapid hardening clinker-efficient concretes based on composite Portland cements. Eastern-European Journal of Enterprise Technologies, 6 (102), 38-48. Retrieved from: https://doi.org/10.15587/1729-4061.2019.185111.
https://doi.org/10.15587/1729-4061.2019.185111
Kirakevych, I., Sanytsky, M., Shyiko, O. Kagarlitskiy, R. (2021). Modification of cementitious matrix of rapid-hardening high-performance concretes. Theory and Building Practice. 3 (1), 79-84. Retrieved from: https://doi.org/10.23939/jtbp2021.01.079.
https://doi.org/10.23939/jtbp2021.01.079
Gots, V., Berdnyk, O., Lastivka, O., Maystrenko, A. & Amelina, N. (2023). Corrosion of basalt fiber with titanium dioxide coating in NaOH and Ca(OH)2 solutions. AIP Conf. Proc. 2490, 050010. Retrieved from: https://doi.org/10.1063/5.0122739.
https://doi.org/10.1063/5.0122739
Valcuende, M., Parra, C., Marco, E., Garrido, A., Martínez, E. & Cánoves, J. (2012). Influence of limestone filler and viscosity-modifying admixture on the porous structure of self-compacting concrete. Constr. Build. Mater., 28 (1), 122-128. Retrieved from: https://doi.org/10.1016/j.conbuildmat.2011.07.029.
https://doi.org/10.1016/j.conbuildmat.2011.07.029
Ting, M., Wong, K., Rahman, M. Meheron, S. (2021). Deterioration of marine concrete exposed to wetting-drying action. J. Clean. Prod, 278, 123383. https://doi.org/10.1016/j.jclepro.2020.123383.
https://doi.org/10.1016/j.jclepro.2020.123383
Sun, Y. & Wu, X. (2022). Two types of corrosion resistant high-performance concrete: ECC and EPS concrete. Advances in Civil Function Structure and Industrial Architecture. Retrieved from: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003305019-38/two....
https://doi.org/10.1201/9781003305019-38
Shi, Z., Shi, C., Zhao, R. & Wan, S. (2015). Comparison of alkali-silica reactions in alkali-activated slag and Portland cement mortars. Materials and Structures. 48, 743-751 Retrieved from: https://doi.org/10.1617/s11527-015-0535-4.
https://doi.org/10.1617/s11527-015-0535-4
Ivashchyshyn, H., Sanytsky, M., Kropyvnytska, T. & Rusyn, B. (2019). Study of low-emission multicomponent cements with a high content of supplementary cementitious materials. Eastern-European Journal of Enterprise Technologies. 4(6-100), 39-47. Retrieved from: https://doi.org/10.15587/1729-4061.2019.175472.
https://doi.org/10.15587/1729-4061.2019.175472
Looney, T., Leggs, M., Volz, J. & Floyd, R. (2022). Durability and corrosion resistance of ultra-high performance concretes for repair. Construction and Building Materials, 345, 128238. Retrieved from: https://doi.org/10.1016/j.conbuildmat.2022.128238.
https://doi.org/10.1016/j.conbuildmat.2022.128238