BERT

Data Set Formation Method for Checking the Quality of Learning Language Models of the Transitive Relation in the Logical Conclusion Problem Context

A method for data set formation has been developed to verify the ability of pre-trained models to learn transitivity dependencies. The generated data set was used to test the quality of learning the transitivity dependencies in the task of natural language inference (NLI). Testing of a data set with a size of 10,000 samples (MultiNLI) used to test the RoBerta model.