solid oxide fuel cell

A Binary Liquid Mixture of Bioethanol-Water and Biodiesel-Water as Fuel for NSDC-L|NSDC|NSDC-L DIRECT ETHANOL-SOLID Oxide Fuel Cell

This research studies the possibility on using a binary liquid mixture of bioethanol-water and biodiesel-water as fuel for a NSDC-L|NSDC|NSDC-L single fuel cell. The ratio of bioethanol-water was 70:30, as well as the ratio of biodiesel-water. The fuel vapor flowed into the fuel cell system under the temperatures of 673, 773 and 873 K with a flow rate of 1–1.5 ml•min-1. The highest power densities were found at 673 K which are 2.984 and 1.838 mW•cm-2 for bioethanol-water and biodiesel-water, respectively.

Optimization of geometric parameters of a semi-spheroidal solid oxide fuel cell anode using the 3D stress and strain distribution graphs

The purpose. Determination of radii ranges for cylindrical and convex (semi-spheroidal) parts of the solid oxide fuel cell (SOFC) semi-spheroidal shape anode based on stress and strain parameters calculated; comparison of 3D graphs of stress/strain distribution in anodes of proposed and spheroidal shapes; substantiation of the semi-spheroidal anode potential to withstand deformation and stress gradient under operational conditions.

Substantiation of the shape of a solid oxide fuel cell anode using the stress-strain and shape-dependent crack deceleration approaches

Stress and strain distributions in the YSZ–NiO spheroidal shape anode-substrate for a solid oxide fuel cell (SOFC) under pressure of operating environment were calculated using the finite element analysis. The features were then compared with ones of the cylindrical shape anode. The radii ranges for the cylindrical and spheroidal (segments of a sphere) parts of the anode ensuring its improved deformation resistance and more uniform stress distribution were suggested.

Samarium-Doped Ceria/Yttria-Stabilized Zirconia Composite Prepared by Solid State Reaction

A research on the preparation of composite samarium-doped ceria (SDC) with yttrium-stabilized zirconia (YSZ) has been conducted at the SDC:YSZ ratio of 0:1; 1:9; 1:1; 9:1 and 1:0. This research aims to investigate the crystal structure and the ionic conductivity of the prepared materials. XRD analysis equipped with Le Bail refinement was used to analyze the crystal structure, space group, cell parameters, and cell volume. Meanwhile, the ionic conductivity was determined by impedance measurement.