A Binary Liquid Mixture of Bioethanol-Water and Biodiesel-Water as Fuel for NSDC-L|NSDC|NSDC-L DIRECT ETHANOL-SOLID Oxide Fuel Cell

2021;
: pp. 254 - 262
1
Research Group of Solid State Chemistry & Catalysis, Chemistry Department, Sebelas Maret University
2
Research Group of Solid State Chemistry & Catalysis, Chemistry Department, Sebelas Maret University

This research studies the possibility on using a binary liquid mixture of bioethanol-water and biodiesel-water as fuel for a NSDC-L|NSDC|NSDC-L single fuel cell. The ratio of bioethanol-water was 70:30, as well as the ratio of biodiesel-water. The fuel vapor flowed into the fuel cell system under the temperatures of 673, 773 and 873 K with a flow rate of 1–1.5 ml•min-1. The highest power densities were found at 673 K which are 2.984 and 1.838 mW•cm-2 for bioethanol-water and biodiesel-water, respectively. It is a promising result for a single fuel cell test with a very low rate of liquid fuel flow. Meanwhile, open circuit voltage (OCV) of the single fuel cell with bioethanol-water fuel is 1.439 V which is close to the theoretical OCV. However, OCV of the single fuel cell with biodiesel-water as fuel is 0.710 V which is lower than the theoretical OCV. Cell polarization seems still being the problem causing voltage loss during single fuel cell test.

  1. Alriksson B., Rose S., Van Z. et al.: Appl. Environ. Microbiol. J., 2009, 75, 2366. https://doi.org/10.1128/AEM.02479-08
  2. Torres-Jimenez E., Svoljsal-Jerman M. et al.: Energ. Fuel, 2010, 24, 2002. https://doi.org/10.1021/ef901158a
  3. Colella W., Jacobson M.,Golden D.: J. Power Sour., 2005, 150, 150. https://doi.org/10.1016/j.jpowsour.2005.05.092
  4. Badwal S., Giddey S., Kulkarni A. et al.: Appl. Energ., 2015, 145, 80. https://doi.org/10.1016/j.apenergy.2015.02.002
  5. Beuscher U., Cleghorn S., Johnson W.: Int. J. Energy Res., 2005, 29, 1103. https://doi.org/10.1002/er.1142
  6. Dokmaingam P.: Eng. J., 2015, 19, 1. https://doi.org/10.4186/ej.2015.19.2.1
  7. Nobrega S. et al.: J. Power Sources, 2012, 213, 156, 2012. https://doi.org/10.1016/j.jpowsour.2012.03.104
  8. Kirubakaran R., Jain S., Nema R.: Sustain. Energy Rev., 2009, 13, 2430. https://doi.org/10.1016/j.rser.2009.04.004
  9. Nobrega S., Fonseca F., Gelin P. et al.: Energy Procedia, 2012, 28, 28. https://doi.org/10.1016/j.egypro.2012.08.037
  10. Qin H. et al.: Energy Environ. Sci., 2011, 4, 1273. https://doi.org/10.1039/c0ee00420k
  11. Imran S., Raza R., Abbas G., Zhu B.: J. Fuel Cell Sci. Technol., 2011, 8, 061014. https://doi.org/10.1115/1.4004475
  12. Hanna J., Lee W., Shi Y., Ghoniem A.: Prog. Energy Combust. Sci., 2014, 40, 74. https://doi.org/10.1016/j.pecs.2013.10.001
  13. Helveg S., Lopez-Cartes C., Sehested J. et al.: Nature, 2004, 427, 5. https://doi.org/10.1038/nature02278
  14. Lyu Z., Shi W., Han M.: Appl. Energ., 2018, 228, 556. https://doi.org/10.1016/j.apenergy.2018.06.114
  15. Wang X., Ma Y., Raza R., Muhammed M., Zhu B.: Electrochem.Commun., 2008, 10, 1617. https://doi.org/10.1016/j.elecom.2008.08.023
  16. Aslannejad H., Barelli L., Babaie A., Bozorgmehri S.: Appl. Energ., 2016, 177, 179. https://doi.org/10.1016/j.apenergy.2016.05.127
  17. Steil M., Nobrega S., Georges S. et al.: Appl. Energ., 2017, 199, 180. https://doi.org/10.1016/j.apenergy.2017.04.086
  18. Akdeniz Y., Timurkutluk B., Timurkutluk C.: Int. J. Hydrogen Energ., 2016, 41, 10021. https://doi.org/10.1016/j.ijhydene.2016.03.169
  19. Rahmawati F., Syarif D., Paramita P., Heraldy E.: Adv. Mater. Res., 2014, 896, 49. https://doi.org/10.4028/www.scientific.net/AMR.896.49
  20. Rahmawati F., Nuryanto A., Nugrahaningtyas K.: IOP Conf. Ser: Mater. Sci. Eng., 2016, 107, 012035. https://doi.org/10.1088/1757-899X/107/1/012035
  21. Zhu W., Xia C., Ding D. et al.: Mater. Res. Bull., 2006, 41, 2057. https://doi.org/10.1016/j.materresbull.2006.04.001
  22. Doroshenko I., Pogorelov V., Sablinskas V.: Dataset Pap. Chem., 2013, 2013. https://doi.org/10.7167/2013/329406
  23. [23] https://chem.libretexts.org/Ancillary_Materials/Reference/Reference_Tabl...
  24. Mattos L., Jacobs G., Davis B., Noronha F.: Chem. Rev., 2012, 112, 4094. https://doi.org/10.1021/cr2000114
  25. Sukwattanajaroon V., Assabumrungrat S., Charojrochkul S. et al.: Bioethanol-Fuelled Solid Oxide Fuel Cell System for Electrical Power Generation [in]: Nayeripour M. (Ed.), Renewable Energy - Trends and Applications. IntechOpen 2011. https://doi.org/10.5772/22179
  26. Bion N., Epron F., Duprez D.: Bioethanol reforming for H2 production. A comparison with hydrocarbon reforming [in]: Spivey J., Dooley K. (Eds.), Catalysis v.22. Royal Society of Chemistry, Cambridge 2010, 1-55. https://doi.org/10.1039/9781847559630-00001
  27. Syahputra R., Rahmawati F., Prameswari A., Saktian R.: AIP Conf. Proceed., 2017, 1823, 020061. https://doi.org/10.1063/1.4978134
  28. Arechederra R., Treu B., Minteer S.: J. Power Sources, 2007, 173, 156. https://doi.org/10.1016/j.jpowsour.2007.08.012
  29. Ribadeneira E., Hoyos B.: J. Power Sources, 2008, 180, 238. https://doi.org/10.1016/j.jpowsour.2008.01.084
  30. Yang T., Sezer H., Celik I. et al.: Int. J. Electrochem. Sci., 2017, 12, 6801. https://doi.org/10.20964/2017.07.30