Comparison and Clustering of Textual Information Sources Based on the Cosine Similarity Algorithm
This article presents a study aimed at developing an optimal concept for analyzing and comparing information sources based on large amounts of text information using natural language processing (NLP) methods. The object of the study was Telegram news channels, which are used as sources of text data. Pre-processing of texts was carried out, including cleaning, tokenization and lemmatization, to form a global dictionary consisting of unique words from all information sources.