Hardware Implementation of Parallelized Fuzzy Adaptive Resonance Theory Neural Network

A hardware implementation design of parallelized fuzzy Adaptive Resonance Theory neural network is described and simulated. Parallel category choice and resonance are implemented in the network. Continuous-time and discrete-time winner-take-all neural circuits identifying the largest of M inputs are used as the winner-take-all units. The continuous-time circuit is described by a state equation with a discontinuous right-hand side. The discrete-time counterpart is governed by a difference equation.