In this paper, we prove the existence and regularity of weak solutions for a class of nonlinear elliptic equations with degenerate coercivity and singular lower-order terms with natural growth with respect to the gradient and $L^{m(\cdot)}$ ($m(x)\geq 1$) data. The functional setting involves Lebesgue–Sobolev spaces with variable exponents.
- Arcoya D., Barile S., Martínez–Aparicio P. J. Singular quasilinear equations with quadratic growth in the gradient without sign condition. Journal of Mathematical Analysis and Applications. 350 (1), 401–408 (2009).
- Boccardo L. Problems with singular and quadratic gradient lower order terms. ESAIM: Control, Optimisation and Calculus of Variations. 14 (3), 411–426 (2008).
- Giachetti D., Murat F. An elliptic problem with a lower order term having singular behaviour. Bollettino Della Unione Matematica Italiana. 2, 349–370 (2009).
- Khelifi H., Elhadfi Y. Nonlinear elliptic equations with variable exponents involving singular nonlinearity. Mathematical Modeling and Computing. 8 (4), 705–715 (2021).
- Zhan C. Entropy solutions for nonlinear elliptic equations with variable exponents. Electronic Journal of Differential Equations. 2014 (92), 1–14 (2014).
- Alvino A., Boccardo L., Ferone V., Orsina L., Trombetti G. Existence results for nonlinear elliptic equations with degenerate coercivity. Annali di Matematica Pura ed Applicata. 182 (1), 53–79 (2003).
- Boccardo L., Dall' Aglio A., Orsina L. Existence and regularity results for some elliptic equations with degenerate coercivity. Atti Sem. Mat. Fis. Univ. Modena. 46, 51–81 (1998).
- Boccardo L. Some elliptic problems with degenerate coercivity. Advanced Nonlinear Studies. 6 (1), 1–12 (2006).
- Croce G. The regularizing effects of some lower order terms on the solutions in an elliptic equation with degenerate coercivity. Rendiconti di Matematica e delle sue Applicazioni. 27, 299–314 (2007).
- Boccardo L. Quasilinear elliptic equations with natural growth terms: the regularizing effects of lower order terms. J. Nonlin. Conv. Anal. 7 (1), 355–365 (2006).
- Croce G. An elliptic problem with degenerate coercivity and a singular quadratic gradient lower order term. Discrete and Continuous Dynamical Systems – S. 5 (3), 507–730 (2012).
- Khelifi H. Existence and regularity for solution to a degenerate problem with singular gradient lower order term. Moroccan Journal of Pure and Applied Analysis. 8 (3), 310–327 (2022).
- Carmona J., Martínez–Aparicio P. J., Rossi J. D. A singular elliptic equation with natural growth in the gradient and a variable exponent. Nonlinear Differential Equations and Applications. 22 (6), 1935–1948 (2015).
- Fan X. L., Shen J., Zhao D. Sobolev embedding theorems for spaces $W^{m,p(x)}(\Omega)$. Journal of Mathematical Analysis and Applications. 262 (2), 749–760 (2001).
- Diening L., Harjulehto T., Hästö P., Ruzicka M. Lebesque and Sobolev spaces with variable exponents. Lecture Notes in Mathematics, Vol. 2017. Springer Verlag, Berlin (2011).
- Carmona J., Martínez–Aparicio P. J., Suárez A. Existence and nonexistence of positive solutions for nonlinear elliptic singular equations with natural growth. Nonlinear Analysis: Theory, Methods & Applications. 89, 157–169 (2013).
- Arcoya D., Boccardo L., Leonori T., Porretta A. Some elliptic problems with singular natural growth lower order terms. Journal of Differential Equations. 249 (11), 2771–2795 (2010).
- Carmona J., Martínez–Aparicio P. J. A Singular Semilinear Elliptic Equation with a Variable Exponent. Advanced Nonlinear Studies. 16 (3), 1935–1948 (2016).
- Murat F., Bensoussan A., Boccardo L. On a nonlinear partial differential equation having natural growth terms and unbounded solutions. Annales de l'Institut Henri Poincaré. Analyse Non Linéaire. 5 (4), 347–364 (1988).
- Boccardo L., Murat F., Puel J.-P. $L^\infty$ estimate for some nonlinear elliptic partial differential equations and application to an existence result. SIAM Journal on Mathematical Analysis. 23 (2), 326–333 (1992).
- Lions J. L. Quelques méthodes de résolution des problèemes aux limites. Dunod. Paris (1969).
- Zhang Q. A strong maximum principle for differential equations with nonstandard $p(x)$-growth conditions. Journal of Mathematical Analysis and Applications. 312 (1), 24–32 (2005).
- Wolanski N. Local bounds, Harnack's inequality and H\"older continuity for divergence type elliptic equations with non-standard growth. Revista De La Unión Matemática Argentina. 56 (1), 73–105 (2015).