Quasi-static problem of thermoelasticity for layered shallow cylindrical shells of irregular structure

2023;
: pp. 204–211
https://doi.org/10.23939/mmc2023.01.204
Received: October 10, 2022
Revised: December 12, 2022
Accepted: December 14, 2022

Mathematical Modeling and Computing, Vol. 10, No. 1, pp. 204–211 (2023)

1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University
6
Lviv Polytechnic National University

For rectangular layered shallow cylindrical shells of irregular structure, the quasi-static problem of unbound thermoelasticity is formulated.  As a mathematical model, the equations of the shear theory of shallow shells of Timoshenko type are used.  The closed solution for the formulated problem is found by the methods of integral transformations.  The distribution of temperature, displacements, forces and moments in a two-layer cylindrical shell under local convective heating is analyzed numerically.

  1. Reddy J. N.  Mechanics of Laminated Composite Plates and Shells.  Theory and Analysis.  New York, CRC Press (2004).
  2. Encyclopedia of Thermal Stresses (ed. by R. Hetnarski).  Springer. Vol. 11 (2014).
  3. Kolyano Yu. M.  Methods of thermal conductivity and thermoelasticity of heterogeneous bodies.  Kyiv, Naukova Dumka (1992), (in Ukrainian).
  4. Brischetto S., Carrera E.  Heat conduction and thermal analysis in multilayered plates and shells.  Mechanics Research Communications.  38 (6), 449–455 (2011).
  5. Kushnir R. M., Nykolyshyn M. M., Zhydyk U. V., Flyachok V. M.  On the theory of inhomogeneous anisotropic shells with initial stresses.  Journal of Mathematical Sciences.  186, 61–72 (2012).
  6. Tokovyy Y., Chyzh A., Ma C.  Thermal analysis of radially-inhomogeneous hollow cylinders vs cylindrical shells.  Proceedings of the sixth ACMFMS. Taiwan. 216–219 (2018).
  7. Ootao Y., Tanigawa Y., Miyatake K.  Transient thermal stresses of cross-ply laminated cylindrical shell using a higher-order shear deformation theory.  Journal of Thermal Stresses.  33 (1), 55–74 (2010).
  8. Zhydyk U. V., Flyachok V. M.  Temperature fields in shallow shells of a layered structure.  Qualilogy of the Book.  1 (31), 94–97 (2017), (in Ukrainian).
  9. Zhydyk U. V.  Layered transversely reinforced cylindrical shell under unsteady heating.  Appl. Mechanical Problems & Math.  17, 106–112 (2019), (in Ukrainian).
  10. Fazelzadeh S. A., Rahmani S., Ghavanloo E., Marzocca P.  Thermoelastic vibration of doubly-curved nano-composite shells reinforced of doubly-curved of doubly-curved nano-composite shells reinforced.  Journal of Thermal Stresses.  42 (1), 1–17 (2019).
  11. Punera D., Kant T., Desai Y. M.  Thermoelastic analysis of laminated and functionally graded sandwich cylindrical shells with two refined higher order models.  Journal of Thermal Stresses.  41 (1), 54–79 (2018).
  12. Brischetto S., Carrera E.  Coupled thermo-mechanical analysis of one-layered and multilayered isotropic and composite shells.  Computer Modeling in Engineering & Sciences.  56 (3), 249–301 (2010).
  13. Li Y., Yang L., Zhang L., Gao Y.  Exact thermoelectroelastic solution of layered one-dimensional quasicrystal cylindrical shells.  Journal of Thermal Stresses.  41 (10–12), 1450–1467 (2018).
  14. Musii R. S., Zhydyk U. V., Mokryk O. Ya., Melnyk N. B.  Functionally gradient isotropic cylindrical shell locally heated by heat sources.  Mathematical Modeling and Computing.  6 (2), 367–373 (2019).
  15. Musii R. S., Zhydyk U. V., Turchyn Ya. B., Svidrak I. H., Baibakova I. M.  Stressed and strained state of layered cylindrical shell under local convective heating.  Mathematical Modeling and Computing.  9 (1), 143–151 (2022).