Complex dynamics and chaos control in a nonlinear discrete prey–predator model

2023;
: pp. 593–605
https://doi.org/10.23939/mmc2023.02.593
Received: June 06, 2022
Revised: March 26, 2023
Accepted: May 25, 2023

Mathematical Modeling and Computing, Vol. 10, No. 2, pp. 593–605 (2023)

1
Faculté Polydisciplinaire Khouribga, Sultan moulay Slimane University, MRI Laboratory
2
Faculté Polydisciplinaire Khouribga, Sultan moulay Slimane University, MRI Laboratory
3
Faculte Polydisciplinaire Khouribga, Sultan moulay Slimane University, MRI Laboratory

The dynamics of prey–predator interactions are often modeled using differential or difference equations.  In this paper, we investigate the dynamical behavior of a two-dimensional discrete prey–predator system.  The model is formulated in terms of difference equations and derived by using a nonstandard finite difference scheme (NSFD), which takes into consideration the non-overlapping generations.  The existence of fixed points as well as their local asymptotic stability are proved.  Further, it is shown that the model experiences Neimark–Sacker bifurcation (NSB for short) and period-doubling bifurcation (PDB) in a small neighborhood of the unique positive fixed point under certain parametric conditions.  This analysis utilizes bifurcation theory and the center manifold theorem.  The chaos produced by NSB and PDB is stabilized.  Finally, we use numerical simulations and computer analysis to check our theories and show more complex behaviors.

  1. Meziani T., Mohdeb N.  Dynamical behavior of predator–prey model with non-smooth prey harvesting.  Mathematical Modeling and Computing.  10 (2), 261–271 (2023).
  2. Vijayalakshmi T., Senthamarai R.  Study of two species prey–predator model in imprecise environment with harvesting scenario.  Mathematical Modeling and Computing.  9 (2), 385–398 (2022).
  3. Xiao M., Cao J.  Hopf bifurcation and non-hyperbolic equilibrium in a ratio-dependent predator-prey model with linear harvesting rate: Analysis and computation.  Mathematical and Computer Modelling.  50 (3–4), 360–379 (2009).
  4. Zhu J., Wu R., Chen M.  Bifurcation analysis in a predator–prey model with strong Allee effect.  Zeitschrift für Naturforschung A.  76 (12), 1091–1105 (2021).
  5. Elaydi S.  Discrete Chaos, Applications in Science and Engineering.  Chapman and Hall/CRC, London (2008).
  6. Freedman H. I.  Deterministic Mathematical Models in Population Ecology. Marcel Dekker, Inc., New York (1980).
  7. Leslie P., Gower J.  The properties of a stochastic model for the predator–prey type of interaction between two species.  Biometrika.  47 (3–4), 219-234 (1960).
  8. Murry J. D.  Mathematical Biology.  Springer, New York (1989).
  9. Mokni K., Elaydi S., Ch-Chaoui M., Eladdadi A.  Discrete Evolutionary Population Models: A new Approach.  Journal of Biological Dynamics.  14 (1), 454–478 (2020).
  10. Elaydi S.  Global Dynamics of Discrete Dynamical Systems and Difference Equations (2019)  In: Elaydi S., Potzsche C., Sasu A. (eds)  Difference Equations, Discrete Dynamical Systems and Applications. ICDEA 2017.  Springer Proceedings in Mathematics & Statistics,  287. Springer, Cham (2019).
  11. Elaydi S., Kang Y., Luis L.  The effects of evolution on the stability of competing species.  Journal of Biological Dynamics.  16 (1), 816–839 (2022).
  12. Li B., He Z.  Bifurcations and chaos in a two-dimensional discrete Hindmarsh–Rose model.  Nonlinear Dynamics.  76 (20), 697–715 (2014).
  13. Zhang L., Zou L.  Bifurcations and Control in a Discrete Predator–Prey Model with Strong Allee Effect.  International Journal of Bifurcation and Chaos.  28 (5), 1850062 (2018).
  14. Din Q.  Complexity and chaos control in a discrete-time prey-predator model.  Communications in Nonlinear Science and Numerical Simulation.  49, 113–134 (2017).
  15. Rajni, Ghosh B.  Multistability, chaos and mean population density in a discrete-time predator–prey system.  Chaos, Solitons & Fractals.  162, 112497 (2022).
  16. Hamada M. Y., El-Azab H., El-Metwally H.  Bifurcation analysis of a two-dimensional discrete time predator–prey model.  Mathematical Methods in the Applied Sciences.  46 (4), 4815–4833 (2022).
  17. Gümüs Ö. A., Feckan M.  Stability, Neimark–Sacker bifurcation and chaos control for a prey–predator system with harvesting effect on predator.  Miskolc Mathematical Notes.  22 (2), 663–679 (2021).
  18. Tassaddiq A., Shabbir M. S, Din Q., Naaz H.  Discretization, Bifurcation, and Control for a Class of Predator–Prey Interactions.  Fractal and Fractional.  6 (1), 31 (2022).
  19. Holling C. S.  The components of predation as revealed by a study of small-mammal predation of the European pine sawfly.  Canadian Entomologist.  91 (5), 293–320 (1959).
  20. Salman S. M., Yousef A. M., Elsadany A. A.  Stability, bifurcation analysis and chaos control of a discrete predator–prey system with square root functional response.  Chaos, Solitons & Fractals.  93, 20–31 (2016).
  21. Sea G., DeAngelis D. L.  A predator–prey model with a Holling type I functional response including a predator mutual interference.  Journal of Nonlinear Science.  21, 811–833 (2011).
  22. Li S., Liu W.  A delayed Holling type III functional response predator–prey system with impulsive perturbation on the prey.  Advances in Difference Equations.  2016, 42 (2016).
  23. Hsu S.-B., Hwang T.-W.  Global Stability for a Class of Predator–Prey Systems.  SIAM Journal on Applied Mathematics.  55 (3), 763–783 (1995).
  24. Al-Kahby H., Dannan F., Elaydi S.  Non standard Discretization Methods for Some Biological Models.  Applications of Nonstandard Finite Difference Schemes. 155–180 (2000).
  25. Mickens R. E.  Nonstandard Finite Difference Methods of Differential Equations.  Singapore, World Scientific (1994).
  26. Liu P., Elaydi S. N.  Discrete Competitive and Cooperative Models of Lotka–Volterra Type.  Journal of Computational Analysis and Applications.  3, 53–73 (2001).
  27. Ben Ali H., Mokni K., Ch-Chaoui M.  Controlling chaos in a discretized prey–predator system.  International Journal of Nonlinear Analysis and Applications.  14 (1), 1385–1398 (2023).
  28. Tassaddiq A., Shabbir M. S., Din Q., Ahmad K., Kazi S.  A Ratio–Dependent Nonlinear Predator–Prey Model with Certain Dynamical Results.  IEEE Access.  8, 195074–195088 (2020).
  29. Streipert S. H., Wolkowicz G. S. K., Bohner M.  Derivation and Analysis of a Discrete Predator–Prey Model.  Bulletin of Mathematical Biology.  84, 67 (2022).
  30. Bairagi N., Biswas M.  A predator–prey model with Beddington–DeAngelis functional response: A non-standard finite-difference method.  Journal of Difference Equations and Applications.  22 (4), 581–593 (2016).
  31. Ongun M. Y., Ozdogan N.  A nonstandard numerical scheme for a predator–prey model with allee effect.  Journal of Nonlinear Sciences and Applications.  10 (2), 713–723 (2017).
  32. Ch-Chaoui M., Mokni K.  A discrete evolutionary Beverton–Holt population model.  International Journal of Dynamics and Control.  11, 1060–1075 (2023).
  33. Mokni K., Ch-Chaoui M.  Asymptotic Stability, Bifurcation Analysis and Chaos Control in a Discrete Evolutionary Ricker Population Model with immigration.  ICDEA 2021: Advances in Discrete Dynamical Systems, Difference Equations and Applications. 363–403 (2023).
  34. Mokni K., Ch-Chaoui M.  Complex dynamics and bifurcation analysis for a Beverton–Holt population model with Allee effect.  International Journal of Biomathematics.  16 (7), 2250127 (2023).
  35. Elaydi S.  An Introduction to Difference Equations. Springer, New York (2005).
  36. Kuznetsov Y. A.  Elements of Applied Bifurcation Theory. Springer, New York (2004).