In this paper we are interested to the dynamic von Karman equations coupled with viscous damping and without rotational forces, $(\alpha =0)$ [Chueshov I., Lasiecka I. (2010)], this problem describes the buckling and flexible phenomenon of small nonlinear vibration of vertical displacement to the elastic plates. Our fundamental goal is to establish the existence and the uniqueness to the weak solution for the so-called global energy, under assumption $F_0\in H^{3+\epsilon}(\omega)$. Finally for illustrate our theoretical results we use the finite difference method.
- Chueshov I., Lasiecka I. Von Karman Evolution, Well-posedness and Long Time Dynamics. New York, Springer (2010).
- Ciarlet P. G., Rabier R. Les Equations de von Karman. Lecture Notes in Mathematics. Vol. 826. New York, Springer (1980).
- Lions J. L., Magenes E. Problèmes aux Limites non Homogènes et Applications. Vol. 1. Gauthier–Villars, Paris, Dunod (1968).
- Oudaani J., El Mouatasim A., El-Aqqad B. Uniqueness of Solution to the von Karman Equations with Free Boundary Conditions. Nonlinear Dynamics and Systems Theory. 20 (4), 425–438 (2020).
- Oudaani J. Numerical approach to the uniqueness solution of von Karman evolution. International Journal of Mathematics in Operational Research. 13 (4), 450–470 (2018).
- Bilbao S. A family of conservative finite difference schemes for the dynamical von Karman plate equations. Numerical Methods for Partial Differential Equations. 24 (1), 193–218 (2007).
- Pereira D. C., Raposo C. A., Avila J. A. J. Numerical solution and exponential decay to von Karman system with frictional damping. Applied Mathematics and Information Sciences. 8 (4), 1575–1582 (2014).
- Gupta M. M., Manohar R. P. Direct solution of Biharmonic equation using non coupled approach. Journal of Computational Physics. 33 (2), 236–248 (1979).