Mathematical modeling of changes in density of near-surface ionic layers in semi-infinite metals. Equations for displacements of ionic layers

2023;
: pp. 988–994
https://doi.org/10.23939/mmc2023.03.988
Received: June 08, 2023
Revised: September 01, 2023
Accepted: September 07, 2023

Mathematical Modeling and Computing, Vol. 10, No. 3, pp. 988–994 (2023)

1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University

In this work, we propose a mathematical model for describing the change in the ion density of the near-surface ionic layers of a semi-infinite metal.  Through averaging over the subsystem of conduction electrons, we obtain in the adiabatic approximation an effective Hamiltonian of the ionic subsystem of a semi-infinite metal, which models the effect of the "metal–vacuum" separation surface on the structure of the near-surface ionic layers.  We calculate the free energy of such a model and, by its minimization, obtain an equation for finding the displacements $\mathbf{\xi}_{m}$ of the ionic layer $m$.  We show that in the absence of an inhomogeneous distribution of the electronic subsystem $\mathbf{\xi}_{m}\equiv 0$.

  1. Roco M. C., Williams R. S., Alivisatos P.  Nanotechnology Research Directions: IWGN Workshop Report Vision for Nanotechnology in the Next Decade.  Springer, Dordrecht (2000).
  2. Kostrobij P. P., Markovych B. M.  Effect of Coulomb interaction on chemical potential of metal film.  Philosophical Magazine.  98 (21), 1991–2002 (2018).
  3. Kostrobij P. P., Markovych B. M.  The chemical potential and the work function of a metal film on a dielectric substrate.  Philosophical Magazine Letters.  99 (1), 12–20 (2019).
  4. Li S., Gao X.-L.  Handbook of Micromechanics and Nanomechanics.  Jenny Stanford Publishing (2013).
  5. Nagirnyi T., Tchervinka K.  Basics  of mechanics of local non-homogeneous elastic bodies. Bases of nanomechanics. II.  Rastr-7, Lviv (2014), (in Ukrainian).
  6. Kittel C.  Quantum Theory of Solids.  Wiley, New York (1991).
  7. Kostrobij P. P., Markovych B. M.  Semi-infinite metal: Perturbative treatment based on semi-infinite jellium.  Condensed Matter Physics.  11 (4), 641–651 (2008).
  8. Kostrobij P. P., Markovych B. M.  Semi-infinite jellium: Thermodynamic potential, chemical potential, and surface energy.  Physical Review B.  92 (7), 075441 (2015).
  9. Kostrobij P. P., Markovych B. M.  Semi-infinite jellium: Step potential model.  Physical Review B.  93 (15), 155401 (2016).
  10. Vavrukh M., Krokhmalskii T.  Reference system approach in the electron liquid theory I. General relations.  Physica Status Solidi (b).  168 (2), 519–532 (1991).
  11. Vakarchuk I. O.  Quantum mechanics.  Ivan Franko LNU, Lviv (2012), (in Ukrainian).
  12. Jahnke E., Emde F., Lösch F.  Tables of Higher Functions.  B. G. Teubner, Verlagsgesellschaft (1966).
  13. Krasko H. L., Gursky Z. A.  Model pseudopotential and some atomic properties of alkali and alkaline earth metals.  Reports of the USSR Academy of Sciences.  197 (4), 810–813 (1971).
  14. Lundqvist S., March N. H.  Theory of the inhomogeneous electron gas.  Springer, New York (1983).
  15. Bottger H.  Principles of the Theory of Lattice Dynamics.  Academie-Verlag, Berlin (1983).
  16. Landau L. D., Lifshits E. M.  Theoretical physics. Theory of elasticity.  Nauka, Moscow (1987).