Derivation of hyper-singular integral equations for thermoelectric bonded materials featuring a crack parallel to interface

2023;
: pp. 1230–1238
https://doi.org/10.23939/mmc2023.04.1230
Received: September 26, 2023
Accepted: November 07, 2023

Mathematical Modeling and Computing, Vol. 10, No. 4, pp. 1230–1238 (2023)

1
Fakulti Kejuruteraan Pembuatan, Universiti Teknikal Malaysia Melaka
2
Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka; Forecasting and Engineering Technology Analysis (FETA) Research Group, Universiti Teknikal Malaysia Melaka
3
Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, University Teknikal Malaysia Melaka; Forecasting and Engineering Technology Analysis (FETA) Research Group, University Teknikal Malaysia Melaka
4
Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka; Forecasting and Engineering Technology Analysis (FETA) Research Group, Universiti Teknikal Malaysia Melaka
5
Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, University Teknikal Malaysia Melaka; Forecasting and Engineering Technology Analysis (FETA) Research Group, University Teknikal Malaysia Melaka
6
Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, University Teknikal Malaysia Melaka; Forecasting and Engineering Technology Analysis (FETA) Research Group, University Teknikal Malaysia Melaka

In this paper, the derivation of hyper-singular integral equations (HSIEs) for thermoelectric bonded materials (TEBM) featuring a crack parallel to interface subject to in-plane shear stress $\tau^\infty_{xy}$ was intensively studied.  Generally, stress intensity factors (SIFs) were calculated using HSIEs with the help of modified complex stress variable function (MCSVF), and continuity conditions of the resultant electric force and displacement electric function.  The unknown crack opening displacement (COD) function, electric current density, and energy flux load are mapped into the square root singularity function using the curved length coordinate method as the right-hand term.  This unknown function is then used to compute the dimensionless SIFs in order to determine the stability behavior of TEBM featuring a crack parallel to interface subject to in-plane shear stress $\tau^\infty_{xy}$.  Numerical results of the dimensionless SIFs at all the crack tips are presented.  Our results are totally in good agreement with those of the previous works.  It is observed that the dimensionless SIFs at the crack tips depend on the elastic constants ratio, the crack geometries, the electric conductivity, and the thermal expansion coefficients.

  1. Song K., Song H. P., Schiavone P., Gao C. F.  Electric current induced thermal stress around a bi-material interface crack.  Engineering Fracture Mechanics.  208, 1–12 (2019).
  2. Jiang D., Zhou Y.-T.  Role of crack length, crack spacing and layer thickness ratio in the electric potential and temperature of thermoelectric bi-materials systems.  Engineering Fracture Mechanics.  259, 108170 (2022).
  3. Cui Y. J., Wang K. F., Zheng L., Wang B. L., Zhang C. W.  Theoretical model of fatigue crack growth of a thermoelectric pn-junction bonded to an elastic substrate.  Mechanics of Materials.  151, 103623 (2020).
  4. Du X.-K., Zhang Y.-L., Ding S.-H.  Exact solutions of interfacial cracking problem of elliptic inclusion in thermoelectric material.  In E3S Web of Conferences.  261, 02089 (2021).
  5. Jiang D., Zhou Y.-T.  Role of crack length, crack spacing and layer thickness ratio in the electric potential and temperature of thermoelectric bi-materials systems.  Engineering Fracture Mechanics.  259, 108170 (2022).
  6. Nourazar M., Yang W., Chen Z.  Fracture analysis of a curved crack in a piezoelectric plane under general thermal loading.  Engineering Fracture Mechanics.  284, 109208 (2023).
  7. Dutta B., Banerjea S.  Solution of a hypersingular integral equation in two disjoint intervals.  Applied Mathematics Letters.  22 (8), 1281–1285 (2009).
  8. Hamzah K. B., Nik Long N. M. A., Senu N., Eshkuvatov Z. K.  Stress intensity factor for bonded dissimilar materials weakened by multiple cracks.  Applied Mathematical Modelling.  77 (1), 585–601 (2020).
  9. Hamzah K. B., Nik Long N. M. A., Senu N., Eshkuvatov Z. K.  Numerical solution for crack phenomenon in dissimilar materials under various mechanical loadings.  Symmetry.  13 (2), 235 (2021).
  10. Elahi M. R., Mahmoudi Y., Salimi Shamloo A., Jahangiri Rad M.  A novel collocation method for numerical solution of hypersingular integral equation with singular right-hand function.  Advances in Mathematical Physics.  2023, 5845263 (2023).
  11. Todoroki A.  Electric current analysis of CFRP using perfect fluid potential flow.  Transactions of the Japan Society for Aeronautical and Space Sciences.  55 (3), 183–190 (2012).
  12. Nik Long N. M. A., Eshkuvatov Z. K.  Hypersingular integral equation for multiple curved cracks problem in plane elasticity.  International Journal of Solids and Structures.  46 (13), 2611–2617 (2009).
  13. Chen Y. Z., Hasebe N.  Stress-intensity factors for curved circular crack in bonded dissimilar materials.  Theoretical and Applied Fracture Mechanics.  17 (3), 189–196 (1992).
  14. Hamzah K. B., Nik Long N. M. A., Senu N., Eshkuvatov Z. K., Ilias M. R.  Stress intensity factors for a crack in bonded dissimilar materials subjected to various stresses.  Universal Journal of Mechanical Engineering.  7 (4), 172–182 (2019).
  15. Mayrhofer K., Fischer F. D.  Derivation of a new analytical solution for a general two-dimensional finite-part integral applicable in fracture mechanics.  International Journal for Numerical Method in Engineering.  33 (5), 1027–1047 (1992).
  16. Monegato G.  Numerical evaluation of hypersingular integrals.  Journal of Computational and Applied Mathematics.  50 (1–3), 9–31 (1994).
  17. Mason T. C., Handscomb D. C.  Chebyshev Polynomials.  Chapman and Hall/CR (2003).
  18. Kythe P. K., Schaferkotter M. R.  Handbook of Computational Methods for Integration.  Chapman and Hall/CRC (2004).
  19. Isida M., Noguchi H.  Arbitrary array of cracks in bonded half planes subjected to various loadings.  Engineering Fracture Mechanics.  46 (3), 365–380 (1993).