Machine learning in lung lesion detection caused by certain diseases

: pp. 1084–1092
Received: April 21, 2023
Revised: December 10, 2023
Accepted: December 13, 2023

Mathematical Modeling and Computing, Vol. 10, No. 4, pp. 1084–1093 (2023)

Lviv Polytechnic National University
Lviv Polytechnic National University

The work highlights neural network applications to medical images, namely X-ray images.  An overview of neural networks used to analyze medical images was conducted.  Such a neural network has been implemented and tested on third-party images.

  1. Chemlal Y., Azouazi M.  Implementing quality assurance practices in teaching machine learning in higher education.  Mathematical Modeling and Computing.  10 (3), 660–667 (2023).
  2. Bellaj K., Benmir M., Boujen S.  Enhancing image inpainting through image decomposition and deep neural networks.  Mathematical Modeling and Computing.  10 (3), 720–732 (2023).
  3. Krizhevsky A., Sutskever I., Hinton G. E.  ImageNet classification with deep convolutional neural networks.  Communications of the ACM.  60 (6), 84–90 (2017).
  4. Liu P., Lu L., Zhang J., Huo T., Liu S., Ye Z.  Application of Artificial Intelligence in Medicine: An Overview.  Current Medical Science.  41 (60), 1105–1115 (2021).
  5. COVID-19 Data Explorer – Our World in Data.
  6. On the approval of clinical protocols for the provision of medical care in the specialty "Pulmonology": Order of the Ministry of Health of Ukraine from 19.03.2007 No 128.
  7. Bursov A. I.  Application of artificial intelligence in medical data analysis.  Almanac of Clinical Medicine.  47 (7), 630–633 (2019).
  8. Van Ginneken B.  Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning.  Radiological Physics and Technology.  10 (1), 23–32 (2017).
  9. Yadav S.  Brief Intro to Medical Image Analysis and Deep Learning.
  10. Topol E. J.  High-performance medicine: the convergence of human and artificial intelligence.  Nature Medicine.  25 (1), 44–56 (2019).
  11. Elgendi M., Nasir M. U., Tang Q., Fletcher R. R., Howard N., Menon C., Ward R., Parker W., Nicolaou S.  The Performance of Deep Neural Networks in Differentiating Chest X-Rays of COVID-19 Patients From Other Bacterial and Viral Pneumonias.  Frontiers in Medicine.  7, 550 (2020).
  12. Almezhghwi K., Serte S., Al-Turjman F.  Convolutional neural networks for the classification of chest X-rays in the IoT era.  Multimedia Tools and Applications.  80 (19), 29051–29065 (2021).
  13. Tang Y.-X., Tang Y.-B., Peng Y., Yan K., Bagheri M., Redd B. A., Brandon C. J., Lu Z., Han M., Xiao J., Summers R. M.  Automated abnormality classification of chest radiographs using deep convolutional neural networks.  npj Digital Medicine.  3 (1), 70 (2020).
  14. Pasa F., Golkov V., Pfeiffer F., Cremers D., Pfeiffer D.  Efficient Deep Network Architectures for Fast Chest X-Ray Tuberculosis Screening and Visualization.  Scientific Reports.  9 (1), 6268 (2019).
  15. Maity A., Nair R. T., Chandra A.  Image Pre-processing techniques comparison: COVID-19 detection through Chest X-Rays via Deep Learning.  International Journal of Scientific Research in Science and Technology.  7 (6), 113–123 (2020).
  16. Patel O., Maravi P. S. Y., Sharma S.  A Comparative Study of Histogram Equalization Based Image Enhancement Techniques for Brightness Preservation and Contrast Enhancement.  Signal & Image Processing: An International Journal.  4 (5), 11–25 (2013).
  17. Gieіczyk A., Marciniak A., Tarczewska M., Lutowski Z.  Pre-processing methods in chest X-ray image classification.  PLOS ONE.  17 (4), e0265949 (2022).
  18. Chest X-Ray Images (Pneumonia).
  19. Hacking C., Luong D.  Pneumonia.