deep learning

ADAPTIVE OBJECT RECOGNITION THROUGH A META-LEARNING APPROACH FOR DYNAMIC ENVIRONMENTS

Object recognition systems often struggle to maintain accuracy in dynamic environments due to challenges such as lighting variations, occlusions, and limited training data. Traditional convolutional neural networks (CNNs) require extensive labeled datasets and lack adaptability when exposed to new conditions. This study aims to develop an adaptive object recognition framework that enhances model generalization and rapid adaptation in changing environments.

CREATING A FACIAL RECOGNITION SYSTEM BASED ON A NEURAL NETWORK THAT WORKS IN REAL TIME

The article is devoted to the theoretical foundations and practical aspects of facial recognition using neural networks. The paper analyzes various approaches to feature extraction from facial images, as well as methods for training neural networks for recognition. Special attention is paid to problems related to variations in lighting, facial expressions, and other factors affecting recog- nition accuracy. The paper describes the creation and optimization of a neural network for real-time human face recognition.

Predictive modeling of haze using chaos theory and deep learning algorithms

With the swift growth of urbanization and industrialization, fine particulate matter (PM10) has escalated into a major global environmental crisis.  PM10 is often used as a haze indicator, severely affecting human health and ecosystem stability.  Accurate prediction of PM10 levels is crucial, but existing models face challenges in handling vast data and achieving high accuracy.  This study investigates four years of PM10 time series in industrial area in Malaysia.  Paper aims to develop and compare haze predicting models using chaos theory, including

Comparison of some CNN architectures for detecting cardiomegaly from chest X-ray images

In medical image analysis, deep learning and convolutional neural networks (CNN) are widely employed, particularly in tasks such as classification and segmentation.  This study specifically addresses their application in healthcare for detecting cardiomegaly, a condition characterized by an enlarged heart, often related to factors such as hypertension or coronary artery diseases.  The primary objective is to develop an algorithm to identify cardiomegaly in chest X-ray images, constituting a binary classification problem (whether the image exhibits cardiomegaly or not). 

ML MODELS AND OPTIMIZATION STRATEGIES FOR ENHANCING THE PERFORMANCE OF CLASSIFICATION ON MOBILE DEVICES

The paper highlights the increasing importance of machine learning (ML) in mobile applications, with mobile devices becoming ubiquitous due to their accessibility and functionality. Various ML models, including Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs), are explored for their applications in real-time classification on mobile devices. The paper identifies key challenges in deploying these models, such as limited computational resources, battery consumption, and the need for real-time performance.

Advanced YOLO models for real-time detection of tomato leaf diseases

The increasing focus on smart agriculture in the last decade can be attributed to various factors, including the adverse effects of climate change, frequent extreme weather events, increasing population, the necessity for food security, and the scarcity of natural resources.  The government of Morocco adopts preventative measures to combat plant illnesses, specifically focusing on tomatoes.  Tomatoes are widely acknowledged as one of the most important vegetable crops, but they are highly vulnerable to several diseases that significantly decrease their productivity.  De

Revolutionizing tomato pest management: Synergy of Deep Learning, IoT, and Precision Agriculture

The increasing worldwide demand for agricultural goods, particularly tomatoes, underscores the need for effective pest control.  Key pests such as Whiteflies, Fruit Fly, and Helicoverpa Armigera pose significant threats to tomato crops.  This research proposes a novel approach by integrating modern technologies such as deep learning and the Internet of Things (IoT) to revolutionize traditional pest management methods.  Using a portable Pest Counting Device equipped with the YOLOv8 deep learning model on a Raspberry Pi 4B, coupled with the Firebase IoT platform, facilita

Intelligent Fake News Prediction System Based on NLP and Machine Learning Technologies

The article describes a study of identification of fake news based on natural language processing, big data analysis and deep learning technology. The developed system automatically checks the news for signs of fake news, such as the use of manipulative language, unverified sources and unreliable information. Data visualization is implemented on the basis of a friendly user interface that displays the results of news analysis in a convenient and understandable format.

Intelligent driver assistance systems based on computer vision and deep learning

This article presents an integrated Advanced Driver Assistance System (ADAS) that combines several key functional modules, such as collision warning, lane detection, traffic sign recognition, and pothole detection, which are implemented using modern deep learning models, particularly YOLOv8n. The system is optimized for devices with limited computational resources, such as Raspberry Pi or NVIDIA Jetson Nano, by employing a modular architecture and parallel data processing to ensure realtime performance.