Simulation of statistical mean and variance of normally distributed data $N_X(m_X,\sigma_X)$ transformed by nonlinear functions $g(X)=\cos X$, $e^X$ and their inverse functions $g^{-1}(X)=\arccos X$, $\ln X$

2023;
: pp. 1014–1022
https://doi.org/10.23939/mmc2023.04.1014
Received: January 14, 2023
Revised: November 15, 2023
Accepted: November 16, 2023

Mathematical Modeling and Computing, Vol. 10, No. 4, pp. 1014–1022 (2023)

1
Lviv Polytechnic National University
2
Lviv Polytechnic National University

This paper presents analytical relationships for calculating statistical mean and variances of functions $g(X)=\cos X$, $e^X$, $g^{-1}(X)=\arccos X$, $\ln X$ of transformation of a normally $N_X(m_X,\sigma_X)$ distributed random variable.

  1. Hudson D. J.  Lectures on elementary statistics and probability.  Geneva, CERN (1963).
  2. Ku H. H.  Notes on the Use of Propagation of Error Formulas.  Journal of Research of the National Bureau of Standards. Section C: Engineering and Instrumentation.  70C (4), 263–273 (1966).   
  3. Bevington P., Robinson D. K.  Data Reduction and Error Analysis for the Physical Sciences.  McGraw-Hill, Boston (2002).
  4. Taylor J. R.  An Introduction to Error Analysis.  Univ. Sci. Books, Sausalito, CA (1997).
  5. Wikipedia. Propagation of uncertainty.  https://en.wikipedia.org/wiki/Propagation of uncertainty.
  6. Suhir E.  Applied Probability for Engineers and Scientistics.  McGraw-Hill Companies (1997).
  7. Papoulis A.  Probability, Random Variables, and Stochastic Processes.  McGraw-Hill (1991).
  8. Bohm G., Zech G.  Introduction to Statistics and data Analysis for Physics.  Verlag Deutsches Elektronen-Synchrotron (2010).
  9. Samorodnitsky G., Taqqu M. S.  Stable Non-Gaussian Random Processes.  New York, Chapman and Hall (1994).
  10. Wichmann E.  Quantum Physics. Berkeley Physics Course. Vol. 4.  McGraw-Hill Book Company (1971).
  11. Leach А.  Molecular Modelling: Principles and Applications.  Prentice Hall  (2001).
  12. Goodman J. W.  Statistical Optics.  John Wiley and Sons. Inc. (2015).
  13. Patel J. K., Read C. B.  Handbook of the Normal Distribution.  New York, Dekker (1982).
  14. Marvin R., Arnljot H.  System Reliability Theory: Models, Statistical Methods, and Applications.  John Wiley and Sons. Inc. (2004).
  15. Liang T., Jia X. Z.  An empirical formula for yield estimation from singly truncated performance data of qualified semiconductor devices.  Journal of Semiconductors.  33 (12), 125008 (2012).
  16. Gu K., Jia X., You T., Liang T.  The yield estimation of semiconductor products based on truncated samples.  International Journal of Metrology and Quality Engineering.  4 (3), 215–220 (2013).
  17. Einstein A.  On the motion of particles suspended in a fluid at rest, required by the molecular-kinetic theory of heat.  Collection of articles: Leningrad, ONTI-GROTL (1936).
  18. Einstein A., Smolukhovsky M.  Brownian motion.  Collection of articles. Leningrad, ONTI-GROTL (1936).
  19. Risken H.  The Fokker–Planck quation.  Berlin–Heidelberg, Springer (1989).
  20. Gihman I., Skorochodov A.  The Theory of Statistic Processes I.  Springer, Berlin (2004).
  21. Kosobutskyy P. S., Karkulovska M. S.  Simulation of statistical mean and variance of normally distributed random values, transformed by nonlinear functions $\sqrt{|X|}$ and $\sqrt{X}$.  Mathematical Modeling and Computing.  9 (2), 318–325 (2022).
  22. Rode G. G.  Propagation of measurement errors and measured means of a physical quantity for the elementary functions $\cos X$ and $\arccos X$.  Ukrainian Journal of Physics.  61 (4), 345–352 (2016).
  23. Dwight H.  Tables of Integrals and other Mathematical data.  New York, The Macmillan Company (1961).
  24. Abramowitz M., Stegun I. A.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.  New York, Dover (1972).