Stagnation-point flow and heat transfer over an exponentially shrinking/stretching sheet in porous medium with heat generation

2023;
: pp. 1260–1268
https://doi.org/10.23939/mmc2023.04.1260
Received: September 26, 2023
Revised: November 26, 2023
Accepted: November 27, 2023

Mathematical Modeling and Computing, Vol. 10, No. 4, pp. 1260–1268 (2023)

1
Department of Mathematics and Statistics, Faculty of Science, University of Putra Malaysia
2
Department of Mathematics and Statistics, Faculty of Science, University of Putra Malaysia
3
Department of Mathematics and Statistics, Faculty of Science, University of Putra Malaysia

This study seeks to examine the fluid flow at the stagnation point over an exponentially shrinking and stretching sheet in a porous medium.  This study also investigates the heat transfer rate in the presence of heat generation.  By using the appropriate similarity transformation, we obtained ordinary differential equations (ODEs) that are reduced from the governing system of partial differential equations (PDEs).  These resulting equations are subjected to new boundary conditions and solved numerically by using BVP4C in MATLAB software.  The effects of the parameters involved in this study are summarized and thoroughly discussed: the skin friction coefficient, local Nusselt number, velocity profile, and temperature profile obtained.  The analysis is done by using graphical and tabular data.  The observed parameters are the permeability parameter $K$ and the heat generation parameter $Q$ towards shrinking/stretching parameter $\lambda$.  It is found that a dual solution exists for $\lambda<0$ (shrinking case), whereas the solution is unique for $\lambda>0$ (stretching case).  The analysis reveals that with heat generation being increased, the skin friction coefficient is constant. However, it increases when permeability increases.  The local Nusselt number decreases with heat generation being increased. However, it increases when the permeability increases.

  1. Crane L. J.  Flow past a stretching plate.  Zeitschrift für angewandte Mathematik und Physik ZAMP.  21, 645–647 (1970).
  2. Mahapatra T. R., Gupta A. S.  Magnetohydrodynamic stagnation-point flow towards a stretching sheet.  Acta Mechanica.  152, 191–196 (2001).
  3. Nazar R., Amin N., Filip D., Pop I.  Stagnation point flow of a micropolar fluid towards a stretching sheet.  International Journal of Non-Linear Mechanics.  39 (7), 1227–1235 (2004).
  4. Reza M., Gupta A. S.  Steady two-dimensional oblique stagnation-point flow towards a stretching surface.  Fluid Dynamics Research.  37 (5), 334 (2005).
  5. Lok Y. Y., Amin N., Pop I.  Non-orthogonal stagnation-point flow towards a stretching sheet.  International Journal of Non-Linear Mechanics.  41 (4), 622–627 (2006).
  6. Lok Y. Y., Pop I., Ingham D. B., Amin N.  Mixed convection flow of a micropolar fluid near a non-orthogonal stagnation point on a stretching vertical sheet.  International Journal of Numerical Methods for Heat & Fluid Flow.  19, 459–483 (2006).
  7. Miklavčič M., Wang C.  Viscous flow due to a shrinking sheet.  Quarterly of Applied Mathematics.  64, 283–290 (2006).
  8. Wang C. Y.  Stagnation flow towards a shrinking sheet.  International Journal of Non-Linear Mechanics.  43 (5), 377–382 (2008).
  9. Fan T., Xu H., Pop I.  Unsteady stagnation flow and heat transfer towards a shrinking sheet.  International Communications in Heat and Mass Transfer.  37 (10), 1440–1446 (2010).
  10. Bhattacharyya K.  Boundary layer flow and heat transfer over an exponentially shrinking sheet.  Chinese Physics Letters.  28 (7), 074701 (2011).
  11. Bachok N., Ishak A., Pop I.  Boundary layer stagnation-point flow and heat transfer over an exponentially stretching/shrinking sheet in a nanofluid.  International Journal of Heat and Mass Transfer. 55 (25–26), 8122–8128 (2012).
  12. Pal D., Mandal G.  Mixed convectionв-radiation on stagnation-point flow of nanofluids over a stretching/shrinking sheet in a porous medium with heat generation and viscous dissipation.  Journal of Petroleum Science and Engineering.  126, 16–25 (2015).
  13. Abdollahzadeh M., Sedighi A. A., Esmailpour M.  Stagnation point flow of  nanofluids towards stretching sheet through a porous medium with heat generation.  Journal of Nanofluids.  7 (1), 149–155 (2018).
  14. Rosali H., Ishak A., Pop I.  Stagnation point flow and heat transfer over a stretching/shrinking sheet in a porous medium.  International Communications in Heat and Mass Transfer.  38 (8), 1029–1032 (2011).
  15. Vyas P., Srivastava N.  Radiative boundary layer flow in porous medium due to exponentially shrinking permeable sheet.  International Scholarly Research Notices Thermodynamics. 2012, 214362 (2012).
  16. Yasin M. H. M., Ishak A., Pop I.  Boundary layer flow and heat transfer past a permeable shrinking surface embedded in a porous medium with a second-order slip: A stability analysis.  Applied Thermal Engineering.  115, 1407–1411 (2017).
  17. Hong K., Alizadeh R., Ardalan M. V., Nourbakhsh A., Karimi N., Yang Y., Xiong Q.  Numerical study of nonlinear mixed convection inside stagnation-point flow over surface-reactive cylinder embedded in porous media.  Journal of Thermal Analysis and Calorimetry.  141, 1889–1903 (2020).
  18. Khan U., Zaib A., Bakar S. A., Roy N. C., Ishak A.  Buoyancy effect on the stagnation point flow of a hybrid nanofluid toward a vertical plate in a saturated porous medium.  Case Studies in Thermal Engineering.  27, 101342 (2021).
  19. Wahid N. S., Arifin N. M., Khashi'ie N. S., Pop I., Bachok N., Hafidzuddin M. E. H.  Unsteady mixed convective stagnation point flow of hybrid nanofluid in porous medium.  Neural Computing and Applications.  34, 14699–14715 (2022).
  20. Ismail N. S., Arifin N. M., Nazar R., Bachok N.  Stability Analysis of Stagnation-Point Flow and Heat Transfer over an Exponentially Shrinking Sheet with Heat Generation.  Malaysian Journal of Mathematical Sciences.  13 (2), 107–122 (2019).
  21. Fatunmbi E., Okoya S. S.  Heat Transfer in Boundary Layer Magneto-Micropolar Fluids with Temperature-Dependent Material Properties over a Stretching Sheet.  Advances in Materials Science and Engineering.  2020, 5734979 (2020).
  22. Alias N. S., Hafidzuddin M. E. H.  Effect of suction and MHD induced Navier slip flow due to a non-linear stretching/shrinking sheet.  Mathematical Modeling and Computing.  9 (1), 83–91 (2022).
  23. Wahid N. S., Arifin N. M., Khashiie N. S., Pop I., Bachok N., Hafidzuddin M. E. H.  Radiative flow of magnetic nanofluids over a moving surface with convective boundary condition.  Mathematical Modeling and Computing.  9 (4), 791–804 (2022).
  24. Norzawary N. H. A., Bachok N., Ali F. M., Rahmin N. A. A.  Double solutions and stability analysis of slip flow past a stretching/shrinking sheet in a carbon nanotube.  Mathematical Modeling and Computing.  9 (4), 816–824 (2022).
  25. Japili N., Rosali H., Bachok N.  MHD stagnation point flow over a stretching or shrinking sheet in a porous medium with velocity slip.  Mathematical Modeling and Computing.  9 (4), 825–832 (2022).