Ternary hybrid nanofluid flow caused by thermal radiation and mass transpiration in a porous stretching/shrinking sheet

: pp. 400–409
Received: October 27, 2022
Revised: April 04, 2023
Accepted: April 05, 2023

Mathematical Modeling and Computing, Vol. 10, No. 2, pp. 400–409 (2023)

Department of Studies in Mathematics, Shivagangotri, Davangere University
Institute for Single Crystals of the National Academy of Sciences of Ukraine
Department of Studies in Mathematics, Shivagangotri, Davangere University
Department of Mechanical Engineering, University of West Attica

In the current analysis, ternary hybrid nanofluid flow with heat transfer under the influence of transpiration and radiation is explored.  Partial differential equations (PDEs) of the current work are mapped by using a similarity variable to convert into ordinary differential equations (ODEs) form.  The volume fractions of the ternary hybrid nanofluid are used in the entire calculation to achieve better results.  The exact investigation of the momentum equation produces the domain value.  The impact of thermal radiation  is considered under energy equation and solved analytically with solution domain to yield the temperature profile.  Graphical representations can be used to evaluate the effects of the factors thermal radiation, heat source or sink, and porous media.  The present work is taken into consideration for numerous industrial applications.

  1. Sakiadis B. C.  Boundary layer behaviour on continuous solid surfaces: I. Boundary layer equations for two-dimensional and axisymmetric flow.  AIChE Journal.  7, 26–28 (1961).
  2. Sakiadis B. C.  Boundary layer behaviour on continuous solid surfaces: II. The boundary layer on a continuous flat surface.  AIChE Journal.  7, 221–225 (1961).
  3. Crane L. J.  Flow past a stretching plate.  Journal of Applied Mathematics and Physics (ZAMP).  21, 645–647 (1990).
  4. Roşca N. C., Roşca A. V., Aly E. H., Pop I.  Semi-analytical solution for the flow of a nanofluid over a permeable stretching/shrinking sheet with velocity slip using Buongiorno's mathematical model.  European Journal of Mechanics – B/Fluids.  58, 39–49 (2016).
  5. Siddheshwar P. G., Mahabaleshwar U. S.  Effects of radiation and heat source on MHD flow of a viscoelastic liquid and heat transfer over a stretching sheet.  International Journal of Non-Linear Mechanics.  40 (6), 807–820 (2005).
  6. Nandeppanavar M. M., Vajravelu K., Abel M. S., Siddalingappa M. N.  Second order slip flow and heat transfer over a stretching sheet with non-linear Navier boundary condition.  International Journal of Thermal Sciences.  58, 143–150 (2012).
  7. Mahabaleshwar U. S., Anusha T., Sakanaka P. H., Bhattacharyya S.  Impact of Lorentz force and Schmidt number on chemically reactive Newtonian fluid flow on a stretchable surface when Stefan Blowing and Thermal Radiation are Significant.  Arabian Journal for Science and Engineering.  12, 2427–12443 (2021).
  8. Mahabaleshwar U. S., Sneha K. N., Huang N.-H.  An effect of MHD and radiation on CNT$_{\rm S}$-water based nanofluid due to a stretching sheet in a Newtonian fluid.  Case Studies in Thermal Engineering.  28, 101462 (2021).
  9. Maxwell J. C.  A Treatise on Electricity and Magnetism.  Clarendon, Oxford (1873).
  10. Choi S. U. S., Eastman J. A.  Enhancing thermal conductivity of fluids with nanoparticles.  ASME Fluids Engineering Division.  231, 99–105 (1995).
  11. Aly E. H.  Existence of the multiple exact solutions for nanofluids flow over a stretching/shrinking sheet embedded in a porous medium at the presence of magnetic field with electrical conductivity and thermal radiation effects.  Powder Technology.  301, 760–781 (2016).
  12. Benos L. T., Polychronopoulos N. D., Mahabaleshwar U. S., Lorenzini G., Sarris I. E.  Thermal and flow investigation of MHD natural convection in a nanofluid saturated porous enclosure: an asymptotic analysis.  Journal of Thermal Analysis and Calorimetry.  143, 751–765 (2021).
  13. Vishalakshi A. B., Mahabaleshwar U. S.,  Sarris I. E.  An MHD fluid flow over a porous stretching/shrinking sheet with slips and Mass transpiration.  Micromachines.  13 (1), 116 (2022).
  14. Alias N. S., Hafidzuddin M. E. H.  Effect of suction and MHD induced Navier slip flow due to a non-linear stretching/shrinking sheet.  Mathematical Modeling and Computing.  9 (1), 83–91 (2022).
  15. Khashi'ie N. S., Wahi N., Arifin N. M., Ghani A. A., Hamzah K. B.  Effect of suction on the MHD flow in a doubly-stratified micropolar fluid over a shrinking sheet.  Mathematical Modeling and Computing.  9 (1), 92–100 (2022).
  16. Japili N., Rosali H., Bachok N.  MHD stagnation point flow over a stretching or shrinking sheet in a porous medium with velocity slip.  Mathematical Modeling and Computing.  9 (4), 825–832 (2022).
  17. Yahaya R. I., Ali F. M., Arifin N. M., Khashi'ie N. S., Isa S. S. P. M.  MHD flow of hybrid nanofluid past a stretching sheet: double stratification and multiple slips effects.  Mathematical Modeling and Computing.  9 (4), 871–881 (2022).
  18. Nithya N., Vennila B.  MHD Nanofluid boundary layer flow over a stretching sheet with viscous, ohmic dissipation.  Mathematical Modeling and Computing.  10 (1), 195–203 (2023).
  19. Khan U., Shafiq A., Zaib A., Baleanu D.  Hybrid nanofluid on mixed convective radiative flow from an irregular variably thick moving surface with convex and concave effects.  Case Studies in Thermal Engineering.  21, 100660 (2020).
  20. Jamaludin A., Naganthran K., Nazar R., Pop I.  MHD mixed convection stagnation-point flow of Cu-Al$_2$O$_3$/water hybrid nanofluid over a permeable stretching/shrinking surface with heat source/sink.  European Journal of Mechanics – B/Fluids.  84, 71–80 (2020).
  21. Mahabaleshwar U. S., Vishalakshi A. B., Andersson H. I.  Hybrid nanofluid flow past a stretching/shrinking sheet with thermal radiation and mass transpiration.  Chinese Journal of Physics.  75, 152–168 (2022).
  22. Shakya A., Yahya S. M., Ansari M. A., Khan S. A.  Role of 1-Butanol on Critical Heat Flux Enhancement of TiO$_2$, Al$_2$O$_3$ and CuO Nanofluids.  Journal of Nanofluids.  8 (7), 1560–1565 (2019).
  23. Hamilton R. L., Crosser O. K.  Thermal Conductivity of Heterogeneous Two-Component Systems.  Industrial and Engineering Chemistry Fundamentals.  1 (3), 187–191 (1962).
  24. Sahoo R. R., Kumar V.  Development of a new correlation to determine the viscosity of ternary hybrid nanofluid.  International Communications in Heat and Mass Transfer.  111, 104451 (2020).
  25. Abbasi M., Heyhat M. M., Rajabpour A.  Study of the effects of particle shape and base fluid type on density of nanofluids using ternary mixture formula: a molecular dynamics simulation.  Journal of Molecular Liquids.  305, 112831 (2020).
  26. Sahoo R. R.  Thermo-hydraulic characteristics of radiator with various shape nanoparticle-based ternary hybrid nanofluid.  Powder Technology.  370, 19–28 (2020).
  27. Chakravarthala S. K. R., Sandeep N., Ali M. E., Nuhait A. O.  Heat and mass transfer in 3-D MHD Williamson–Casson fluids flow over a stretching surface with non-uniform heat source/sink.  Thermal Science.  23 (1), 281–293 (2019).
  28. Kumaran G., Sandeep N., Ali M. E.  Computational analysis of magnetohydrodynamic Casson and Maxwell flows over a stretching sheet with cross diffusion.  Results in Physics.  7, 147–155 (2017).
  29. Ali M. E., Sandeep N.  Cattaneo–Christov model for radiative heat transfer of magnetohydrodynamic Casson–ferrofluid: A numerical study.  Results in Physics.  7, 21–30 (2017).
  30. Hamid M., Usman M., Khan Z. H., Ahmad R., Wang W.  Dual solutions and stability analysis of flow and heat transfer of Casson fluid over a stretching sheet.  Physics Letters A.  383 (20), 2400–2408 (2019).
  31. Bataller C. R.  Radiation effects for the Blasius and sakiadis flows with a convective surface boundary condition.  Applied Mathematics and Computation.  206 (2), 832–840 (2008).
  32. Nandy S. K., Pop I.  Effects of magnetic field and thermal radiation on stagnation flow and heat transfer of nanofluid over a shrinking surface.  International Communications in Heat and Mass Transfer.  53, 50–55 (2014).
  33. Anusha T., Huang H.-N., Mahabaleshwar U. S.  Two dimensional unsteady stagnation point flow of Casson hybrid nanofluid over a permeable flat surface and heat transfer analysis with radiation.  Journal of the Taiwan Institute of Chemical Engineers.  127, 79–91 (2021).
  34. Pantokratoras A.  Flow adjacent to a stretching permeable sheet in a Darcy–Brinkman porous medium.  Transport in Porous Media.  80 (2), 223–227 (2009).
  35. Tamayol A., Hooman K., Bahrami M.  Thermal analysis of flow in a porous medium over a permeable stretching wall.  Transport in Porous Media.  85 (3), 661–676 (2010).
  36. Animasaun I. L., Yook S.-J., Muhammad T., Mathew A.  Dynamics of ternary-hybrid nanofluid subject to magnetic flux density and heat source or sink on a convectively heated surface.  Surfaces and Interfaces.  28, 101654 (2022).
  37. Saleem S., Animasaun I. L., Yook S.-J., Qasem M. A.-M., Shah N. A., Faisal M.  Insight into the motion of water conveying three kinds of nanoparticles on a horizontal surface: Significance of thermo-migration and Brownian motion of different nanoparticles.  Surfaces and Interfaces.  30, 101854 (2022).
  38. Elnaqeeb T., Animasaun I. L., Shah N. A.  Ternary-hybrid nanofluids: significance of suction and dual-stretching on three-dimensional flow of water conveying nanoparticles with various shapes and densities.  Zeitschrift für Naturforschung A.  76 (3), 231–243 (2021).
  39. Aly E. H.  Dual exact solutions of graphene-water nanofluid flow over stretching/shrinking sheet with suction/injection and heat source/sink: Critical values and regions with stability.  Powder Technology.  342, 528–544 (2019).
  40. Aly E. H., Hassan M. A.  Suction and injection analysis of MHD nano boundary-layer over a stretching surface through a porous medium with partial slip boundary condition.  Journal of Computational and Theoretical Nanoscience.  11 (3), 827–839 (2014).
  41. Khan Z. H., Qasim M., Ishfaq N., Khan W. A.  Dual Solutions of MHD Boundary Layer Flow of a Micropolar Fluid with Weak Concentration over a Stretching/Shrinking Sheet.  Communications in Theoretical Physics.  67 (4), 449–457 (2017).
  42. Khan S. K., Abel M. S., Sonth R. M.  Visco-elastic MHD flow, heat and mass transfer over a porous stretching sheet with dissipation of energy and stress work.  Heat and Mass Transfer.  40, 47–57 (2003).
  43. Chaim T. C.  Magnetohydrodynamic heat transfer over a non-isothermal stretching sheet.  Acta Mechanica.  122, 169–179 (1997).
  44. Fang T., Yao S., Pop I.  Flow and heat transfer over a generalized stretching/shrinking wall problem. Exact solutions of the Navier-Stokes equations.  International Journal of Non-Linear Mechanics.  46 (9), 1116–1127 (2011).
  45. Hamid M., Usman M., Khan Z. H., Ahmad R., Wang W.  Dual solutions and stability analysis of flow and heat transfer of Casson fluid over a stretching sheet.  Physics Letters A.  383 (20), 2400–2408 (2019).