Impact of magnetohydrodynamic on hybrid nanofluid flow with slip and heat source over an exponentially stretchable/shrinkable permeable sheet

2024;
: pp. 27–36
https://doi.org/10.23939/mmc2024.01.027
Received: June 25, 2023
Revised: November 08, 2023
Accepted: November 08, 2023

Radzi N. A. M., Wahid N. S., Som A. N. M., Arifin N. M. Impact of magnetohydrodynamic on hybrid nanofluid flow with slip and heat source over an exponentially stretchable/shrinkable permeable sheet. Mathematical Modeling and Computing. Vol. 11, No. 1, pp. 27–36 (2024)

1
Department of Mathematics and Statistics, Faculty of Science, University Putra Malaysia
2
Department of Mathematics and Statistics, Faculty of Science, University Putra Malaysia
3
Centre of Foundation Studies for Agriculture Sciences, University Putra Malaysia
4
Department of Mathematics and Statistics, Faculty of Science, University Putra Malaysia; Institute for Mathematical Research, University Putra Malaysia

This research examines the hybrid nanofluid alumina-copper/water flow over a permeable sheet, considering slip, magnetohydrodynamics, and heat source.  To analyze the system, the model is transformed into nonlinear ordinary differential equations (ODEs) via the similarity transformation.  Numerical solutions are attained through the implementation of the bvp4c function in MATLAB.  The study analyzes velocity and temperature profiles, local skin friction, and Nusselt number for various parameters.  Moreover, the impact of magnetohydrodynamics on the system is explored.  Increasing the magnetic parameter leads to an enlargement of the boundary layer thickness and an elevation in the skin friction coefficient.  Overall, this study sheds light on the complex behavior of hybrid nanofluid flows and provides valuable insights into the effects of slip, magnetohydrodynamics, and heat source on the model while also presenting a validated model showcasing the compelling enhancement of heat transfer through the incorporation of copper into alumina nanofluid.

  1. Choi S. U. S.  Enhancing thermal conductivity of fluids with nanoparticles.  In: Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, FED. 99–106 (1995).
  2. Taylor R., Coulombe S., Otanicar T., Phelan P., Gunawan A., Lv W., Rosengarten G., Prasher R., Tyagi H.  Small particles, big impacts: A review of the diverse applications of nanofluids.  Journal of Applied Physics.  113 (1), 011301 (2013).
  3. Devendiran D. K., Amirtham V. A.  A review on preparation, characterization, properties and applications of nanofluids.  Renewable and Sustainable Energy Reviews.  60, 21–40 (2016).
  4. Babu J. A. R., Kumar K. K., Rao S. S.  State-of-art review on hybrid nanofluids.  Renewable and Sustainable Energy Reviews.  77, 551–565 (2017).
  5. Wahid N. S., Arifin N. M., Khashi'ie N. S., Pop I., Bachok N., Hafidzuddin E. H.  MHD hybrid nanofluid flow with convective heat transfer over a permeable stretching/shrinking surface with radiation.  International Journal of Numerical Methods for Heat & Fluid Flow.  32 (5), 1706–1727 (2022).
  6. Khashi'ie N. S., Waini I., Wahid N. S., Arifin N. M., Pop I.  Unsteady separated stagnation point flow due to an EMHD Riga plate with heat generation in hybrid nanofluid.  Chinese Journal of Physics.  81, 181–192 (2023).
  7. Yahaya R. I., Arifin N. M., Pop I., Ali F. M., Isa S. S. P. M.  Dual solutions of unsteady mixed convection hybrid nanofluid flow past a vertical Riga plate with radiation effect.  Mathematics.  11 (1), 215 (2023).
  8. Hamzah M. H., Sidik N. A. C., Ken T. L., Mamat R., Najafi G.  Factors affecting the performance of hybrid nanofluids: A comprehensive review.  International Journal of Heat and Mass Transfer.  115 (A), 630–646 (2017).
  9. Eshgarf H., Kalbasi R., Maleki A., Shadloo M. S., Karimipour A.  A review on the properties, preparation, models and stability of hybrid nanofluids to optimize energy consumption.  Journal of Thermal Analysis and Calorimetry.  144, 1959–1983 (2021).
  10. Waini I., Ishak A., Pop I.  Hybrid nanofluid flow induced by an exponentially shrinking sheet.  Chinese Journal of Physics.  68, 468–482 (2020).
  11. Wahid N. S., Arifin N. M., Khashi'ie N. S., Pop I.  Hybrid nanofluid slip flow over an exponentially stretching/shrinking permeable sheet with heat generation.  Mathematics.  9 (1), 30 (2021).
  12. Mahabaleshwar U. S., Aly E. H., Anusha T.  MHD slip flow of a Casson hybrid nanofluid over a stretching/shrinking sheet with thermal radiation.  Chinese Journal of Physics.  80, 74–106 (2022).
  13. Mahesh R., Mahabaleshwar U. S., Kumar P. N. V., Öztop H. F., Abu-Hamdeh N.  Impact of radiation on the MHD couple stress hybrid nanofluid flow over a porous sheet with viscous dissipation.  Results in Engineering.  17, 100905 (2023).
  14. Wahid N. S., Arifin N. M., Khashi'ie N. S., Pop I.  Mixed convection MHD hybrid nanofluid over a shrinking permeable inclined plate with thermal radiation effect.  Alexandria Engineering Journal.  66, 769–783 (2023).
  15. Jaafar A., Jamaludin A., Mohd Nasir N. A. A., Nazar R., Pop I.  MHD opposing flow of Cu–TiO$_2$ hybrid nanofluid under an exponentially stretching/shrinking surface embedded in porous media with heat source and slip impacts.  Results in Engineering.  17, 101005 (2023).
  16. Patel V. K., Pandya J. U., Patel M. R.  Testing the influence of TiO$_2$–Ag/water on hybrid nanofluid MHD flow with effect of radiation and slip conditions over exponentially stretching & shrinking sheets.  Journal of Magnetism and Magnetic Materials.  572, 170591 (2023).
  17. Mandal G., Pal D.  Stability analysis of radiative-magnetic hybrid nanofluid slip flow due to an exponentially stretching/shrinking permeable sheet with heat generation.  International Journal of Ambient Energy.  44 (1), 1349–1360 (2023).
  18. Takabi B., Salehi S.  Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid.  Advances in Mechanical Engineering.  6, 147059 (2015).
  19. Oztop H. F., Abu-Nada E.  Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids.  International Journal of Heat and Fluid Flow.  29 (5), 1326–1336 (2008).
  20. Wahid N., Arifin N., Khashi'ie N., Pop I., Bachok N., Hafidzuddin M.  Radiative flow of magnetic nanofluids over a moving surface with convective boundary condition.  Mathematical Modeling and Computing.  9 (4), 791–804 (2022).
  21. Norzawary N., Bachok N., Ali F., Rahmin N.  Double solutions and stability analysis of slip flow past a stretching/shrinking sheet in a carbon nanotube.  Mathematical Modeling and Computing.  9 (4), 816–824 (2022).
  22. Yahaya R., Ali F., Arifin N., Khashi'ie N., Isa S. S. P. M.  MHD flow of hybrid nanofluid past a stretching sheet: double stratification and multiple slips effects.  Mathematical Modeling and Computing.  9 (4), 871–881 (2022).