A Levy process approach coupled to the stochastic Leslie–Gower model

2024;
: pp. 178–188
https://doi.org/10.23939/mmc2024.01.178
Received: June 26, 2023
Revised: January 25, 2024
Accepted: February 19, 2024

Ben Said M., Aghoutane N., Azrar L. A Lévy process approach coupled to the stochastic Leslie–Gower model.  Mathematical Modeling and Computing. Vol. 11, No. 1, pp. 178–188 (2024)

1
MMA, FPL, Abdelmalek Essaadi University
2
Mathematical Modeling and Scientific Computing (M2CS), Department of Applied Mathematics and Informatics, ENSIAS, Mohammed V University in Rabat
3
Research Center ST2I, M2CS, Department of Applied Mathematics and Informatics, ENSAM, Mohammed V University in Rabat

This paper focuses on a two-dimensional Leslie–Grower continuous-time stochastic predator–prey system with Lévy jumps.  Firstly, we prove that there exists a unique positive solution of the system with a positive initial value.  Then, we establish sufficient conditions for the mean stability and extinction of the considered system.  Numerical algorithms of higher order are elaborated.  The obtained results show that Lévy jumps significantly change the properties of population systems.

  1. Liu M., Wang K.  Survival analysis of a stochastic cooperation system in a polluted environment.  Journal of Biological Systems.  19 (02), 183–204 (2011).
  2. Lipster R. Sh.  A strong law of large numbers for local martingales.  Stochastics.  3 (1–4), 217–228 (1980).
  3. Lotka A. J.  The Elements of Physical Biology.  Williams and Wilkins, Baltimore (1925).
  4. Leslie P. H.  Some further notes on the use of matrices in populationmathematic.  Biometrica.  35 (3–4), 213–245 (1948).
  5. Leslie P. H., Gower J. C.  The properties of a stochastic model for the predator-prey type of interaction between two species.  Biometrica.  47 (3–4), 219–234 (1960).
  6. Korobeinikov A.  A Lyapunov function for Leslie–Gower predator–prey models.  Applied Mathematics Letters.  14 (6), 697–699 (2001).
  7. Lahrouz A., Ben Said M., Azrar L.  Dynamical Behavior Analysis of the Leslie–Gower Model in Random Environment.  Differential Equations and Dynamical systems.  30, 817–843 (2022).
  8. Bao J., Mao X., Yin G., Yuan C.  Competitive Lotka–Volterra population dynamics with jumps.  Nonlinear Analysis: Theory, Methods & Applications.  74 (17), 6601–6616 (2011).
  9. Applebaum D.  Lévy Processes and Stochastics Calculus.  Cambridge University Press (2009).
  10. Kunita H.  Itô's stochastic calculus: Its surprising power for applications.  Stochastic Processes and their Applications.  120 (5), 622–652 (2010).
  11. Luo Q., Mao X.  Stochastic population dynamics under regime switching.  Journal of Mathematical Analysis and Applications.  334 (1), 69–84 (2007).
  12. Ikeda N., Wantanabe S.  Stochastic Differential Equations and Diffusion Processes.  North-Holland, Amsterdam (1981).
  13. Bao J., Mao X., Yin G., Yuan C.  Competitive Lotka–Volterra population dynamics with jumps.  Nonlinear Analysis: Theory, Methods & Applications.  74 (17), 6601–6616 (2011).
  14. Luo Q., Mao X.  Stochastic population dynamics under regime switching.  Journal of Mathematical Analysis and Applications.  334 (1), 69–84 (2007).
  15. Polasek W., Shaparova E.  Numerical Solution of Stochastic Differential Equations with Jumps in Finance by Eckhard Platen, Nicola Bruti–Liberati.  International Statistical Review.  81 (2), 307–335 (2013).