Searching for similar images using Nash game and machine learning

2024;
: pp. 239–249
https://doi.org/10.23939/mmc2024.01.239
Received: May 31, 2023
Revised: March 03, 2024
Accepted: March 04, 2024

Semmane F. Z., Moussaid N., Ziani M.  Searching for similar images using Nash game and machine learning.  Mathematical Modeling and Computing. Vol. 11, No. 1, pp. 239–249 (2024)

1
LMCSA, FSTM, Hassan II University of Casablanca; LMSA, Department of Mathematics, Faculty of Sciences, Mohammed V University in Rabat
2
University Hassan II of Casablanca, FST Mohammedia, Laboratory of Mathematics, Computer Science and Applications (LMCSA)
3
LMSA, Department of Mathematics, Faculty of Sciences, Mohammed V University in Rabat

The storage of large amounts of digital data, as well as the processing of digital images, are currently expanding significantly across a range of application areas.  As a result, effective management of big images databases is necessary, which calls for the employment of automated and cutting-edge indexing techniques.  One method used for this is Content-Based Image Retrieval (CBIR), which tries to index and query the picture database using visual aspects of the image rather than its semantic features.  In this article, we propose to explore a digital search engine for similar images, based on multiple image representations and clustering, improved by game theory and machine learning methods.

  1. Shriwas K. M., Raut V. R.  Content Based Image Retrieval: A past, Present and New Feature Descriptor.  2015 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2015].  1–7 (2015).
  2. Mumtaz A., Awais A., Muhammd S., Zahid U.  Content Based Image Retrieval (CBIR) Using Materialized Views.  International Conference on Computer Science and Information Technology (ICCSIT), Pattaya (2011).
  3. Autisme-Economie.org.  Le talon d'Achille de la théorie des jeux (2000).
  4. Azencott C.-A.  Introduction to Machine Learning.  DUNOD (2018).
  5. Pass G., Zabith R.  Histogramme refinement for content-based image retrieval.  Proceedings Third IEEE Workshop on Applications of Computer Vision. WACV'96. 96–102 (1996).
  6. Bajscy R.  Computer identification of visual surfaces.  Computer Graphics and Image Processing.  2 (2), 118–130 (1973).
  7. Teague M. R.  Image analysis via the general theory of moments.  Journal of the Optical Society of America.  70 (8), 920–930 (1980).
  8. Elmoumen S., Moussaid N., Aboulaich R.  Image retrieval using Nash equilibrium and Kalai–Smorodinsky solution.  Mathematical Modeling and Computing.  8 (4), 646–657 (2021).
  9. Nasr N., Moussaid N., Gouasnouane O.  The Kalai Smorodinsky solution for blind deconvolution.  Computational and Applied Mathematics.  41 (5), 222 (2022).
  10. Aubin J. P.  Mathematical Methods of Game and Economic Theory.  North Holland Publishing Co. Amsterdam, New York (1979).
  11. Gouasnouane O., Moussaid N., Boujena S., Kabli K.  A nonlinear fractional partial differential equation for image inpainting.  Mathematical Modeling and Computing.  9 (3), 536–546 (2022).