Total and partial observation–detection in linear dynamical systems with characterized sources: finite-dimensional cases

2024;
: pp. 211–224
https://doi.org/10.23939/mmc2024.01.211
Received: June 26, 2023
Revised: February 22, 2024
Accepted: February 26, 2024

Danine M. E.  Total and partial observation–detection in linear dynamical systems with characterized sources: finite-dimensional cases.  Mathematical Modeling and Computing. Vol. 11, No. 1, pp. 211–224 (2024)

Authors:
1
Abdelmalek Essaadi University

In this work, we address the partial observation–detection problem for finite-dimensional dynamical linear systems that may not be fully observable or detectable.  We introduce the concepts of `observation–detection' and `partial observation–detection,' which involve reconstructing either the entirety or a portion of the system state and the source reacting on the system, even when the system is not fully observable or detectable.  We provide characterizations of `observable–detectable systems' and `observable–detectable spaces.'  The reconstruction of the state and source on the observable–detectable subspace is achieved through orthogonal projection, leveraging the algebraic structure of the given finite-dimensional system.  Additionally, we present examples to illustrate our approach.

  1. Aizerman M. A., Gantmacher R. F.  Absolute Stability of Regulator Systems.  Holden-Day (1964).
  2. Bellman R., Kalaba R.  Selected Papers on Mathematical Trends in Control Theory.  Dover Publications, New York (1964).
  3. Bongiorno J. J.  Real-frequency stability criteria for linear time-varying systems.  Proceedings of the IEEE.  52 (7), 832–841 (1964).
  4. Bridgeland T. F.  Stability of Linear Signal Transmissions Systems.  SIAM Review.  5 (1), 7–32 (1963).
  5. Bryson A. E., Ho Y.-C.  Applied Optimal Control: Optimization, Estimation, and Control.  Waltham, MA: Blaisdell (1969).
  6. Gilbert E. G.  Controllability and Observability in Multivariable Control Systems.  Journal of the Society for Industrial and Applied Mathematics Series A Control.  1 (2), 128–151 (1963).
  7. Ho B. L., Kalman R. E.  Effective Construction of Linear State–Variable Models from Input/Output Data.  Automatisierungstechnik.  14 (1–12), 545–548 (1966).
  8. Lee E. B., Markus L.  Foundations of Optimal Control Theory.  John Wiley, New York (1967).
  9. El Jai A., Afifi L.  Spy-sensors and detection.  International Journal of Systems Science.  26 (8), 1447–1463 (1995).
  10. Kalman R. E.  Canonical Structure of Linear Dynamical Systems.  National Academy of Sciences.  48 (4), 596–600 (1962).
  11. Kalman R. E.  Mathematical Description of Linear Dynamical Systems.  Journal of the Society for Industrial and Applied Mathematics Series A Control.  1 (2), 152–192 (1963).
  12. Bichara D., Cozic N., Iggir A.  On the estimation of sequestered parasite population in falciparum malaria patients. RR-8178, INRIA, pp. 22 (2012).
  13. Boukhobza T., Hamelin F., Martinez-Martinez S., Sauter D.  Structural Analysis of the Partial State and Input Observability for Structured Linear Systems: Application to Distributed Systems.  European Journal of Control.  15 (5), 503–516 (2009).
  14. Kang W., Xu L.  A Quantitative Measure of Observability and Controllability.  48th IEEE Conference on Decision and Control. 6413–6418 (2009).