This paper investigates the notion of domination in linear fractional-order distributed systems in a finite-dimensional state. The objective is to compare or classify the input operators with respect to the output ones, and we present the characterization and property results of this concept. Then, we examine the relationship between controllability and the notion of domination. Finally, we provide a numerical example to illustrate our results.
- Afifi L., El Jai A. Systèmes distribués perturbés. Presses universitaires de Perpignan (2015).
- Afifi L., Joundi M., Magri E. M. Domination in hyperbolic distributed systems. International Journal of Mathematical Analysis. 7 (56), 2765–2780 (2013).
- Afifi L., Amimi N., El Jai A., Magri E. M. Regional domination in distributed systems. Applied Mathematical Sciences. 6 (19), 913–924 (2012).
- Afifi L., Joundi M., Lasri K., Magri E. M. Domination of discrete distributed systems. ESAIM: Proceedings and Surveys. 49, 1–10 (2015).
- Balachandran K., Kokila J. On the controllability of fractional dynamical systems. International Journal of Applied Mathematics and Computer Science. 22 (3), 523–531 (2012).
- Balachandran J., Park Y., Trujillo J. J. Controllability of nonlinear fractional dynamical systems. Nonlinear Analysis: Theory, Methods & Applications. 75 (4), 1919–1926 (2012).
- Ghasemi M., Nassiri K. Controllability of Linear Fractional Systems with Delay in Control. Journal of Function Spaces. 2022, 5539770 (2022).
- Klamka J. Controllability of fractional linear systems with delays. 25th International Conference on Methodsand Models in Automation and Robotics (MMAR). 331–336 (2021).
- Sadeghian H., Salarieh H., Alasty A., Meghdari A. Controllability of linear fractional stochastic systems. Scientia Iranica B. 22 (1), 264–271 (2015).