Stress state modeling of non-circular orthotropic hollow cylinders under different types of loading

2024;
: pp. 583–592
Received: May 27, 2023
Revised: June 08, 2024
Accepted: June 15, 2024

Rozhok L. S., Kruk L. A., Isaienko H. L., Shevchuk L. O.  Stress state modeling of non-circular orthotropic hollow cylinders under different types of loading.  Mathematical Modeling and Computing. Vol. 11, No. 2, pp. 583–592 (2024)

1
Department of Theoretical and Applied Mechanics of the National Transport University
2
Department of Theoretical and Applied Mechanics of the National Transport University
3
Department of Information Analysis and Information Security of the National Transport University
4
Department of Foreign Philology and Translation of the National Transport University

Based on a spatial model of the linear theory of elasticity, using an unconventional approach of the reduction of the original three-dimensional boundary value problem described by a system of partial differential equations with variable coefficients to a one-dimensional boundary value problem for a system of ordinary differential equations with constant coefficients, the problem of finding the dimensional stress of hollow elliptic orthotropic cylinders under the influence of various types of loading has been solved under certain boundary conditions at the orientation plane.  Reducing the dimensionality of the original problem is carried out using analytical methods of separating variables in two coordinate directions in combination with the method of approximating functions by discrete Fourier series.  The one-dimensional boundary value problem is solved by the stable numerical method of discrete orthogonalization.

  1. Musii R. S., Zhydyk U. V., Turchyn Ya. B., Svidrak I. H., Baibakova I. M.  Stressed and strained state of layered cylindrical shell under local convective heating.  Mathematical Modeling and Computing.  9 (1), 143–151 (2022).
  2. Lugovyi P. Z., Orlenko S. P.  Effect of the Asymmetry of Cylindrical Sandwich Shells on their Stress–Strain State under Non-Stationary Loading.  International Applied Mechanics.  57 (5), 543–553 (2021).
  3. Wang B., Hao P., Ma X., Tian K.  Knockdown factor of buckling load for axially compressed cylindrical shells: state of the art and new perspectives.  Acta Mechanica Sinica.  38, 421440 (2022).
  4. Chekurin V. F., Postolaki L. I.  Axially symmetric elasticity problems for the hollow cylinder with the stress-free ends. Analytical solving via a variational method of homogeneous solutions.  Mathematical Modeling and Computing.  7 (1), 48–63 (2020).
  5. Zhang X., He Y., Li Z., Zhai Z., Yan R., Chen X.  Static and dynamic analysis of cylindrical shell by different kinds of B-spline wavelet finite elements on the interval.  Engineering with Computers.  36, 1903–1914 (2020).
  6. Chekurin V. F., Postolaki L. I.  Application of the Variational Method of Homogeneous Solutions for the Determination of Axisymmetric Residual Stresses in a Finite Cylinder.  Journal of Mathematical Sciences.  249, 539–552 (2020).
  7. Levchuk S. A., Khmel'nyts'kyi A. A.  The Use of One of the Potential Theory Methods to Study the Static Deformation of Composite Cylindrical Shells.  Strength Mater.  53, 258–264 (2021).
  8. Pabyrivskyi V. V., Pabyrivska N. V., Pukach P. Ya.  The study of mathematical models of the linear theory of elasticity by presenting the fundamental solution in harmonic potentials.  Mathematical Modeling and Computing.  7 (2), 259–268 (2020).
  9. Grigorenko Ya. M., Rozhok L. S.  Stress Analysis of Orthotropic Hollow Noncircular Cylinders.  International Applied Mechanics.  40, 679–685 (2004).
  10. Grigorenko Ya. M., Vasilenko A. T., Emel'yanov N. G., et al.  Statics of Structural Members. Vol. 8 of the 12-volume series Mechanics of Composites.  Kyiv, A.S.K. (1999).
  11. Lekhnitskii S. G.  Theory of elasticity of an anisotropic elastic body.  San Francisco, Holden-Day Inc. (1963).
  12. Godunov S. K.  Numerical solution of boundary-value problems for a system of linear ordinary differential equations.  Usp. Mat. Nauk.  16 (3), 171–174 (1961).
  13. Korn G. A., Korn T. M.  Mathematical Handbook for Scientists and Engineers.  McGraw-Hill, New York (1961).
  14. Hamming R. W.  Numerical Methods for Scientists and Engineers.  MG Graw-Hill, New York (1962).
  15. Grigorenko Ya. M., Rozhok L. S.  Stress Analysis of Hollow Orthotropic Cylinders with Oval Cross-Section.  International Applied Mechanics.  57 (2), 160–171 (2021).
  16. Grigorenko Ya. M., Vlaikov G. G., Grigorenko Р. Ya.  Numerical-analytical solution of shell mechanics problems based on various models.  Kyiv, Publishing house "Academperiodika'" (2006).