Dynamics of a diffusive business cycle model with two delays and variable depreciation rate

2024;
: pp. 617–630
https://doi.org/10.23939/mmc2024.03.617
Received: October 15, 2023
Revised: July 08, 2024
Accepted: July 12, 2024

Lasfar S., Hattaf K., Yousfi N.  Dynamics of a diffusive business cycle model with two delays and variable depreciation rate.  Mathematical Modeling and Computing. Vol. 11, No. 3, pp. 617–630 (2024)

1
Laboratory of Analysis, Modeling and Simulation (LAMS), Faculty of Sciences Ben M'Sick, Hassan II University of Casablanca
2
Laboratory of Analysis, Modeling and Simulation (LAMS), Faculty of Sciences Ben M'Sick, Hassan II University of Casablanca; Equipe de Recherche en Modélisation et Enseignement des Mathématiques (ERMEM), Centre Régional des Métiers de l'Education et de la Formation (CRMEF)
3
Laboratory of Analysis, Modeling and Simulation (LAMS), Faculty of Sciences Ben M'Sick, Hassan II University of Casablanca

The main aim of this work is to analyze the dynamics of a delayed business cycle model described by partial differential equations (PDEs) in order to take into account the depreciation rate of capital stock and the diffusion effect.  Firstly, the existence of solutions and the economic equilibrium are carefully studied.  Secondly, the local stability and the existence of Hopf bifurcation are established.  Finally, some numerical simulations are presented to illustrate the analytical results.

  1. Kaldor N.  A model of the trade cycle.  The Economic Journal.  50 (197), 78–92 (1940).
  2. Kalecki M.  A macrodynamic theory of the business cycle.  Econometrica.  3 (3), 327–344 (1935).
  3. Krawiec A., Szydlowski M.  The Kaldor–Kalecki business cycle model.  Annals of Operations Research.  89, 89–100 (1999).
  4. Hattaf K., Riad D., Yousfi N.  A generalized business cycle model with delays in grossn product and capital stock.  Chaos, Solitons & Fractals.  98, 31–37 (2017).
  5. Mao J., Liu X.  Dynamical analysis of Kaldor business cycle model with variable depreciation rate of capital stock.  AIMS Mathematics.  5 (4), 3321–3330 (2020).
  6. Lasfar S., Warrak E. M., Hattaf Kh., Yousfi N.  Modeling the dynamics of business cycle with general investment and variable depreciation rate of capital stock.  Journal of Mathematics and Computer Science.  29 (3), 264–271 (2023).
  7. Hattaf K.  Spatiotemporal dynamics of a generalized viral infection model with distributed delays and CTL immune response.  Computation.  7 (2), 21 (2019).
  8. Hattaf K., Yousfi N.  A generalized HBV model with diffusion and two delays.  Computers & Mathematics with Applications.  69 (1), 31–40 (2015).
  9. Henry D.  Geometric Theory of Semilinear Parabolic Equations.  Lecture Notes in Mathematics.  Springer–Verlag (1993).
  10. Kuang Y.  Delay Differential Equations with Applications in Population Dynamics.  Academic Press, New York (1993).
  11. Ruan S., Wei J.  On the zeros of transcendental functions with applications to stability of delay differetial equantions with two delays.  Dynamics of Continuous, Discrete and Impulsive Systems. Series A.  10, 863–874 (2003).
  12. Hattaf K.  A new generalized definition of fractional derivative with non-singular kernel.  Computation. 8 (2), 49 (2020).
  13. Hattaf K.  A new generalized class of fractional operators with weight and respect to another function. Archived in Researchgate. 1–18 (2024).
  14. Hattaf K. A new class of generalized fractal and fractal-fractional derivatives with non-singular kernels. Fractal and Fractional.  7 (5), 395 (2023).