Modeling the thermoelectric characteristics of nanostructured material

2024;
: pp. 904–910
https://doi.org/10.23939/mmc2024.03.904
Received: May 09, 2024
Revised: September 25, 2024
Accepted: September 27, 2024

Voznyak O. M., Kostrobij P. P., Polovyi B. Ye.  Modeling the thermoelectric characteristics of nanostructured material.  Mathematical Modeling and Computing. Vol. 11, No. 3, pp. 904–910 (2024)

1
Vasyl Stefanyk Precarpathian National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University

Considered the one-dimensional model of a nanostructured thermoelectric material, in which modeled a nanograin by a potential well, and grain boundaries are represented by potential barriers.  The well and barriers are modeled by Gaussian-type potentials.  Developed a software product to calculate the transmission coefficient through the quantum structure "barrier–well–barrier", based on the Thomas algorithm.  Carried out numerical calculations of the specific conductivity and the Seebeck coefficient for the proposed model. The calculation results agree well with the experimental data.

  1. Hicks L. D., Dresselhaus M. S.  Effect of quantum-well structures on the thermoelectric figure of merit.  Physical Review B.  47 (19), 12727–12731 (1993).
  2. Hicks L. D., Harman T. C., Dresselhaus M. S.  Use of quantum-well superlattices to obtain a high figure of merit fromnonconventional thermoelectric materials.  Applied Physics Letters.  63 (23), 3230–3232 (1993).
  3. Hicks L. D., Harman T. C., Sun X., Dresselhaus M. S.  Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit.  Physical Review B.  53 (16), R10493–R10496 (1996).
  4. Harman T. C., Spears D. L., Manfra M. J.  High thermoelectric figures of merit in Pb\,Te quantum wells.  Journal of Electronic Materials.  25 (7), 1121–1127 (1996).
  5. Dresselhaus M. S., Chen G., Tang M. Y., Yang R. G., Lee H., Wang D. Z., Ren Z. F., Fleurial J.-P., Gogna P.  New directions for low-dimensional thermoelectric materials.  Advanced Materials.  19 (8), 1043–1053 (2007).
  6. Venkatasubramanian R., Siivola E., Colpitts T., O'Quinn B.  Thin-film thermoelectric devices with high room-temperature figures of merit.  Nature.  413, 597–602 (2001).
  7. Zide J. M. O., Vashaee D., Bian Z. X., Zeng G., Bowers J. E., Shakouri A., Gossard A. C.  Demonstration of electron filtering to increase the Seebeck coefficient in ${\mathrm{In}}_{0.53}{\mathrm{Ga}}_{0.47}\mathrm{As}/{\mathrm{In}}_{0.53}{\mathrm{Ga}}_{0.28}{\mathrm{Al}}_{0.19}\mathrm{As}$ superlattices. Physical Review B.  74 (20), 205335 (2006).
  8. Landauer R.  Spatial variation of currents and fields due to localized scatterers in metallic conduction.  IBM Journal of Research and Development.  1 (3), 223–231 (1957).
  9. Landauer R.  Electrical resistance of disordered one dimensional lattices.  Philosophical Magazine.  21 (172), 863–867 (1970).
  10. Pichanusakorn P., Bandaru P.  Nanostructured thermoelectrics.  Materials Science and Engineering: R: Reports.  67 (2–4), 19–63 (2010).
  11. Ahuja P.  Introduction to Numerical Methods in Chemical Engineering.  1.1 Tridiagonal matrix algorithm (TDMA).  PHI Learning Pvt. Ltd. (2010).
  12. Gomez S. S., Romero R.  Few-electron semiconductor quantum dots with Gaussian confinement.  Open Physics.  7 (1), 12–21 (2009).
  13. Sun Y., Liu Y., Li R., Li Y., Bai S.  Strategies to improve the thermoelectric figure of merit in thermoelectric functional materials.  Frontiers in Chemistry.  10, 865281 (2022).