Numerical approximation of the MGT system with Fourier's law

2024;
: pp. 607–616
https://doi.org/10.23939/mmc2024.03.607
Received: December 20, 2023
Accepted: May 15, 2024

Smouk A., Radid A.  Numerical approximation of the MGT system with Fourier's law.  Mathematical Modeling and Computing. Vol. 11, No. 3, pp. 607–616 (2024)

Authors:
1
Department of Mathematics and Informatics, Hassan II University, FSAC, Fundamental and Applied Mathematics Laboratory, Casablanca, Morocco
2
Department of Mathematics and Informatics, Hassan II University, FSAC, Fundamental and Applied Mathematics Laboratory, Casablanca, Morocco

In this paper, we consider the Moore–Gibson–Thompson–Fourier system made by coupling the Moore–Gibson–Thompson (MGT) equation with the classical Fourier heat equation known as the MGT–Fourier model.  For $\sigma=\alpha\beta-\gamma>0$, the authors used the semi-group method to prove the existence and uniqueness of global solutions and the exponential stability of total energy.  Our contribution will consist in studying numerical method based on finite element discretization in the spacial variable $x$ and finite difference schema in time of the MGT–Fourier model.  A discrete stability property and a priori error estimates are proved.  Finally, the numerical simulation agrees well with theoretical results.

  1. Professor Stokes.  An examination of the possible effect of the radiation of heat on the propagation of sound.  The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1 (4), 305–317 (1851).
  2. Moore F. K., Gibson W. E.  Propagation of weak disturbances in a gas subject to relaxation effects.  Journal of the Aerospace Sciences.  27 (2), 117–127 (1960).
  3. Thompson P. A.  Compressible–Fluid Dynamics.  McGraw-Hill, New York (1972).
  4. D'Acunto B., D'Anna A., Renno P.  On the motion of a viscoelastic solid in presence of a rigid wall.  Zeitschrift für Angewandte Mathematik und Physik.  34, 421–438 (1983).
  5. Gorain G. C., Bose S. K.  Exact controllability and boundary stabilization of torsional vibrations of an internally damped flexible space structure.  Journal of Optimization Theory and Applications.  99, 423–442 (1998).
  6. Kaltenbacher B., Lasiecka I., Marchand R.  Wellposedness and exponential decay rates for the Moore–Gibson–Thompson equation arising in high intensity ultrasound.  Control and Cybernetics.  40, 971-988 (2011).
  7. Marchand R., McDevitt T., Triggiani R.  An abstract semigroup approach to the third-order Moore–Gibson–Thompson partial differential equation arising in high-intensity ultrasound: structural decomposition, spectral analysis, exponential stability.  Mathematical Methods in the Applied Sciences.  35 (15), 1896–1929 (2012).
  8. Afilal M., Apalara T. A., Soufyane A., Radid A.  On the decay of MGT-Viscoelastic plate with heat conduction of Cattaneo type in bounded and unbounded domains. Communications on Pure and Applied Analysis.  22 (1), 212–227 (2023).
  9. Bounadja H., Messaoudi S.  A General Stability Result for a Viscoelastic Moore–Gibson–Thompson Equation in the Whole Space.  Applied Mathematics & Optimization.  84, 509–521 (2021).
  10. Conti M., Liverani L., Pata V.  The MGT–Fourier model in the supercritical case.  Journal of Differential Equations.  301, 543–567 (2021).
  11. Alves M. S., Buriol C., Ferreira M. V., Rivera J. E. M., Sepúlveda M., Vera O.  Asymptotic behaviour for the vibrations modeled by the standard linear solid model with a thermal effect.  Journal of Mathematical Analysis and Applications.  399 (2), 472–479 (2013).
  12. Campo M., Fernández J. R., Kuttler K. L., Shillor M., Viaño J. M.  Numerical analysis and simulations of a dynamic frictionless contact problem with damage.  Computer Methods in Applied Mechanics and Engineering.  196 (1–3), 476–488 (2006).
  13. Ciarlet P. G.  The Finite Element Method for Elliptic Problems.  Handbook of Numerical Analysis.  2, 17–351 (1991).