Blind image deblurring using fractional order derivatives and total variation: A Nash equilibrium approach

2024;
: pp. 1035–1045
https://doi.org/10.23939/mmc2024.04.1035
Received: September 14, 2024
Revised: November 04, 2024
Accepted: November 11, 2024

Berhich S., Moussaid N.  Blind image deblurring using fractional order derivatives and total variation: A Nash equilibrium approach.  Mathematical Modeling and Computing. Vol. 11, No. 4, pp. 1035–1045 (2024)

1
Hassan II University of Casablanca, LMCSA, FST, Mohammadia
2
Hassan II University of Casablanca, LMCSA, FST, Mohammadia

Fractional-order modeling represents a viable approach for addressing the inherent limitations of total variation in image deblurring tasks.  This technique is achieved through the discretization of fractional derivatives and has demonstrated significant advancements in enhancing the quality of reconstructed images.  Building upon the success of our previous work on blind deconvolution, where we utilized an image-based total variation to reduce the staircase effect, we analyze and test a novel blind deblurring model based on $\beta$-order fractional derivatives using the Nash game.  This game employs the same type of players, each with their strategy to find an optimal solution, as defined in our previous work.  Furthermore, we compare our proposed method with classical and fractional-order methods with different $\beta$ parameters.  Our numerical results demonstrate, that our method achieves higher effectiveness and better image quality compared to existing reconstruction methods.

  1. Meskine D., Moussaid N., Berhich S.  Blind image deblurring by game theory.  NISS'19: Proceedings of the 2nd International Conference on Networking, Information Systems & Security.  31 (2019).
  2. Rudin L. I., Osher S., Fatemi E.  Nonlinear total variation based noise removal algorithms.  Physica D: Nonlinear Phenomena.  60 (1–4), 259–268 (1992).
  3. Karami F., Meskine D., Sadik K.  Nonlocal total variation system for the restoration of textured images.  International Journal of Computer Mathematics.  98, 1749–1768 (2021).
  4. Kang M., Jung M.  Simultaneous image enhancement and restoration with non-convex total variation.  Journal of Scientific Computing.  87, 83 (2021).
  5. Aboulaich R., Habbal A., Moussaid N.  Optimisation multicritère : Une approche par partage des variables.  Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées.  13, 77–89 (2010).
  6. Nasr N., Moussaid N., Gouasnouane O.  A game theory approach for joint blind deconvolution and inpainting.  Mathematical Modeling and Computing.  10 (3), 674–681 (2023).
  7. Gilboa G., Osher S.  Nonlocal linear image regularization and supervised segmentation.  Multiscale Modeling and Simulation.  6 (2), 595–630 (2007).
  8. Buades A., Coll B., Morel J. M.  A review of image denoising algorithms, with a new one.  SIAM Multiscale Modeling and Simulation.  4 (2), 490–530 (2005).
  9. Li R., Zhang X.  Adaptive sliding mode observer design for a class of T-S fuzzy descriptor fractional order systems.  IEEE Transactions on Fuzzy Systems.  28 (9), 1951–1960 (2020).
  10. Zhang X., Dong J.  LMI criteria for admissibility and robust stabilization of singular fractional-order systems possessing poly-topic uncertainties.  Fractal Fractional.  4 (4), 58 (2020).
  11. Zhang X., Yan Y.  Admissibility of fractional order descriptor systems based on complex variables: An LMI approach.  Fractal Fractional.  4 (1), 8 (2020).
  12. Yang Q., Chen D., Zhao T., Chen T.  Fractional calculus in image processing: A review.  Fractional Calculus and Applied Analysis.  19, 1222–1249 (2016).
  13. Zhou L., Tang J.  Fraction-order total variation blind image restoration based on $L^1$-norm.  Applied Mathematical Modelling.  51, 469–476 (2017).
  14. Zhang Y., Zhang W., Lei Y., Zhou J.  Few-view image reconstruction with fractional-order total variation.  Journal of the Optical Society of America A.  31 (5), 981–995 (2014).
  15. Zhang J., Wei Z.  Fractional Variational Model and Algorithm for Image Denoising.  2008 Fourth International Conference on Natural Computation.  524–528 (2008).
  16. Zhou L., Zhang T., Tian Y., Huang H.  Fraction-Order Total Variation Image Blind Restoration Based on Self-Similarity Features.  IEEE Access.  8, 30436–30444 (2020).
  17. Yan S., Ni G., Liu J.  A fractional-order regularization with sparsity constraint for blind restoration of images.  Inverse Problems in Science and Engineering.  29 (13), 3305–3321 (2021).
  18. Zhang J., Chen K.  A total fractional-order variation model for image restoration with nonhomogeneous boundary conditions and its numerical solution.  SIAM Journal on Imaging Sciences.  8 (4), 2487–2518 (2015).
  19. Perona P., Malik J.  Scale-space and edge detection using anisotropic diffusion.  IEEE Transactions on Pattern Analysis and Machine Intelligence.  12 (70, 629–639 (1990).
  20. You Y. L., Kaveh M.  Fourth-order partial differential equations for noise removal.  IEEE Transactions on Image Processing.  9 (10), 1723–1730 (2000).
  21. Hajiaboli M.  A self-governing fourth-order nonlinear diffusion filter for image noise removal.  IPSJ Transactions on Computer Vision and Applications.  2, 94–103 (2010).
  22. Li F., Shen Ch., Fan J.  Image restoration combining a total variational filter and a fourth-order filter.  Journal of Visual Communication and Image Representation.  18 (4), 322–330 (2007).
  23. Kazemi Golbaghi F., Rezghi M., Eslahchi M. R.  A Hybrid Image Denoising Method Based on Integer and Fractional-Order Total Variation.  Iranian Journal of Science and Technology, Transactions A: Science.  44, 1803–1814 (2020).