The increasing worldwide demand for agricultural goods, particularly tomatoes, underscores the need for effective pest control. Key pests such as Whiteflies, Fruit Fly, and Helicoverpa Armigera pose significant threats to tomato crops. This research proposes a novel approach by integrating modern technologies such as deep learning and the Internet of Things (IoT) to revolutionize traditional pest management methods. Using a portable Pest Counting Device equipped with the YOLOv8 deep learning model on a Raspberry Pi 4B, coupled with the Firebase IoT platform, facilitates instant surveillance of pheromone traps. This integration enables farmers to make informed decisions and optimize pest control efforts. By leveraging the synergy of advanced technologies, farmers can potentially increase crop yields while reshaping conventional pest management techniques. This holistic approach not only gives farmers more control but also diminishes the environmental repercussions linked with conventional pest control methods, highlighting how technology can advance sustainability in agriculture amid persistent pest issues.
- Costa J. M., Heuvelink E. Introduction: the tomato crop and industry. Tomatoes. Wallingford UK, CABI Publishing (2005).
- Agence Ecofin. Le Maroc s'est Hissé au rang de 3ème exportateur mondial de tomates en 2022. https://www.agenceecofin.com/legumes/2404-107649-le-maroc-s-est-hisse-au....
- Eastfruit. Morocco ranked third in the global tomato exports! 2023 eastfruit. https://east-fruit.com/en/trending/morocco-ranked-third-in-the-global-to....
- Ziska L H., Blumenthal D. M., Runion G. B., Hunt E. R. Jr., Diaz-Soltero H. Invasive species and climate change: an agronomic perspective. Climatic Change. 105 (1–2), 13–42 (2011).
- Olson L. J. The Economics of Terrestrial Invasive Species: A Review of the Literature. Agricultural and Resource Economics Review. 35 (1), 178–194 (2006).
- Tiwari M., Sharma N. C., Fleischmann P., Burbage J., Venkatachalam P., Sahi S. V. Nanotitania Exposure Causes Alterations in Physiological, Nutritional and Stress Responses in Tomato (Solanum lycopersicum). Frontiers in Plant Science. 8, 633 (2017).
- Takayama M., Ezura H. How and why does tomato accumulate a large amount of GABA in the fruit? Frontiers in Plant Science. 6, 612 (2015).
- Xu Z., Weiling S., Kaimay H., Sengjiu Z., Guojing L., Guangchao T., Xiuchu X., Guangliang X., Baishen J. The current situation and trend of tomato cultivation in China. Acta Physiologiae Plantarum. 22, 379–382 (2000).
- Jammes M., Urbino C., Diouf M. B., Peterschmitt M. Refining the emergence scenario of the invasive recombinant Tomato yellow leaf curl virus-IS76. Virology. 578, 71–80 (2023).
- Wang X., Liu J., Zhu X. Early real-time detection algorithm of tomato diseases and pests in the natural environment. Plant Methods. 17 (1), 43 (2021).
- She J., Zhan W., Hong S., Min C., Dong T., Huang H., He Z. A method for automatic real-time detection and counting of fruit fly pests in orchards by trap bottles via convolutional neural network with attention mechanism added. Ecological Informatics. 70, 101690 (2022).
- Arias L. A., Bojacá C. R., Ahumada D. A., Schrevens E. Monitoring of pesticide residues in tomato marketed in Bogota, Colombia. Food Control. 35 (1), 213–217 (2014).
- Lippi M., Bonucci N., Carpio R. F., Contarini M., Speranza S., Gasparri A. A YOLO-Based Pest Detection System for Precision Agriculture. 2021 29th Mediterranean Conference on Control and Automation (MED). 342–347 (2021).
- Karar M. E., Alsunaydi F., Albusaymi S., Alotaibi S. A new mobile application of agricultural pests recognition using deep learning in cloud computing system. Alexandria Engineering Journal. 60 (5), 4423–4432 (2021).
- Wang T., Zhao L., Li B., Liu X., Xu W., Li J. Recognition and counting of typical apple pests based on deep learning. Ecological Informatics. 68, 101556 (2022).
- Nanni L., Maguolo G., Pancino F. Insect pest image detection and recognition based on bio-inspired methods. Ecological Informatics. 57, 101089 (2020).
- Li W., Zheng T., Yang Z., Li M., Sun C., Yang X. Classification and detection of insects from field images using deep learning for smart pest management: A systematic review. Ecological Informatics. 66, 101460 (2021).
- Li K., Wang J., Jalil H., Wang H. A fast and lightweight detection algorithm for passion fruit pests based on improved YOLOv5. Computers and Electronics in Agriculture. 204, 107534 (2023).
- Xu W., Xu T., Thomasson J. A., Chen W., Karthikeyan R., Tian G., Shi Y., Ji C., Su Q. A lightweight SSV2-YOLO based model for detection of sugarcane aphids in unstructured natural environments. Computers and Electronics in Agriculture. 211, 107961 (2023).
- Takimoto H., Sato Y., Nagano A. J., Shimizu K. K., Kanagawa A. Using a two-stage convolutional neural network to rapidly identify tiny herbivorous beetles in the field. Ecological Informatics. 66, 101466 (2021).
- Zarboubi M., Chabaa S., Dliou A. Advancing Precision Agriculture with Deep Learning and IoT Integration for Effective Tomato Pest Management. 2023 IEEE International Conference on Advances in Data-Driven Analytics And Intelligent Systems (ADACIS). 1–6 (2023).
- Hu Q., Wang P., Shen C., van den Hengel A., Porikli F. Pushing the limits of deep cnns for pedestrian detection. IEEE Transactions on Circuits and Systems for Video Technology. 28 (6), 1358–1368 (2017).
- Kalfas I., De Ketelaere B., Bunkens K., Saeys W. Towards automatic insect monitoring on witloof chicory fields using sticky plate image analysis. Ecological Informatics. 75, 102037 (2023).
- Peng Y., Wang Y. CNN and transformer framework for insect pest classification. Ecological Informatics. 72, 101846 (2022).
- Bellout A., Dliou A., Latif R., Saddik A. Deep Learning technique for predicting tomato leaf disease. 2023 IEEE International Conference on Advances in Data-Driven Analytics And Intelligent Systems (ADACIS). 1–6 (2023).
- Liu Z., Xiang X., Qin J., Tan Y., Zhang Q., Xiong N. N. Image recognition of citrus diseases based on deep learning. Computers Materials & Continua. 66 (1), 457–466 (2021).
- Redmon J., Divvala S., Girshick R., Farhadi A. You Only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 779–788 (2016).
- Redmon J., Farhadi A. YOLO9000: Better, Faster, Stronger. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 6517–6525 (2017).
- Redmon J., Farhadi A. YOLOv3: An incremental improvement. Preprint arXiv:1804.02767 (2018).
- Bochkovskiy A., Wang C.-Y., Liao H.-Y. M. YOLOv4: Optimal speed and accuracy of object detection. Preprint arXiv:2004.10934 (2020).
- Jocher G., Stoken A., Borovec J., Changyu L., Hogan A. ultralytics/yolov5: v3.0. Zenodo (2020).
- Li C., Li L., Jiang H., Weng K., Geng Y., et al. YOLOv6: A single-stage object detection framework for industrial applications. Preprint arXiv:2209.02976 (2022).
- Wang C.-Y., Bochkovskiy A., Liao H.-Y. M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 7464–7475 (2023).
- Jocher G., Chaurasia A., Qiu J. YOLO by Ultralytics. https://github.com/ultralytics/ultralytics (2023).
- Tusubira J. Cassava Whitefly Dataset. Mendeley Data, V1 (2021).
- Tariq S., Hakim Dr. A., Siddiqi A. A., Owais M. An Image Dataset of Fruit fly Species. Mendeley Data, V1 (2022).
- Reda M. Cassava_Healthy_WhiteFly_Classification. https://www.kaggle.com/datasets/mahmoudreda55/cassava-healthy-whitefly-c... (2020).
- MakeSense, MakeSense.AI – ai solutions for businesses, https://www.makesense.ai.