Chebyshev approximation by the exponent from a rational expression

2025;
: pp. 233–240
Received: March 05, 2024
Revised: November 05, 2024
Accepted: February 22, 2025

Malachivskyi R. P., Bun R. A., Medynskyi I. P.  Chebyshev approximation by the exponent from a rational expression.  Mathematical Modeling and Computing. Vol. 12, No. 1, pp. 233–240 (2025)   

1
Lviv Polytechnic National University
2
Lviv Polytechnic National University; WSB University
3
Lviv Polytechnic National University

A method for constructing Chebyshev approximation with relative error of the exponential from a rational expression is proposed.  It implies constructing an intermediate Chebyshev approximation with absolute error by a rational expression of the logarithm of the function being approximated.  The approximation by a rational expression is calculated as the boundary mean-power approximation using an iterative scheme based on the least squares method with two variable weight functions.  The presented results of solving test examples confirm the fast convergence of the method.

  1. Yudell L. L.  Mathematical Functions and Their Approximations.  Academic Press (1975).
  2. Mitin V. F., Kholevchuk V. V., Kolodych B. P.  Ge-on-GaAs Film resistance thermometers: Low-temperature conduction and magnetoresistances.  Cryogenic.  51 (1), 68–73 (2011).
  3. Malachivskyy P. S., Pizyur Ya. V., Danchak N. V., Orazov E. B.  Chebyshev approximation by exponential-power expression.  Cybernetics and Systems Analysis.  49 (6), 877–881 (2013).
  4. Malachivskyy P. S., Pizyur Ya. V., Danchak N. V., Orazov E. B.  Chebyshev approximation by exponential expression with relative error.  Cybernetics and Systems Analysis.  51 (2), 286–290 (2015).
  5. Iske A.  Approximation Theory and Algorithms for Data Analysis.  New York, Springer (2018).
  6. Jamshidzadeh M., Ein-Mozaffari F., Lohi A.  Experimental analysis of the mass transfer coefficient and interfacial area in an aerated coaxial mixing system comprising a non-newtonian solution. Industrial & Engineering Chemistry Research.  59 (49), 21530–21547 (2020).
  7. Bubela T., Malachivskyy P., Pokhodylo Y., Mykyychuk M., Vorobets O.  Mathematical modeling of soil acidity by the admittance parameters.  Eastern-European Journal of Enterprise Technologies.  6 (10), 4–9 (2016).
  8. Baranovsky S. V., Bomba A. Ya., Lyashko S. I.  Generalization of the antiviral immune response model for complex consideration of diffusion perturbations, body temperature response, and logistic antigen population dynamics.  Cybernetics and Systems Analysis.  58 (4),  576–592 (2022).
  9. Baranovsky S. V., Bomba A. Ya.  Generalizing the infectious disease model taking into account diffusion perturbations, logistic dynamics, and biostimulation.  Cybernetics and Systems Analysis.  59 (1), 134–145 (2023).
  10. Yatsuk V., Bubela T., Pokhodylo Y., Zdeb V.  Improvement of measurement systems for relative quality indicator by immittance parameters.  Proceedings of the 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS 2021. 1, 231–235 (2021).
  11. Majewski J., Malaczіwskyj P., Yatsuk V., Stolyarczuk P., Michalewa M.  Zastosowanie sensorow pojemnosciowych do szybkiej kontroli parametrowroztworow wieloskladnikowych.  Przeglad Elektrotechniczny.  86 (10), 92–95 (2010).
  12. Rudtsch S., von Rohden C.  Calibration and self-validation of thermistors for high-precision temperature measurements.  Measurement.  76, 1–6 (2015).
  13. Verlan A., Fedorchuk V., Ivaniuk V., Sterten J.  Using non-linear integral models in automatic control and measurement systems for sensors' input signals' recovery.  Advances in Intelligent Systems and Computing (AISC).  1323, 18–25 (2021).
  14. Skopetskii V. V., Malachivskii P. S.  Chebyshev approximation of functions by the sum of a polynomial and an expression with a nonlinear parameter and endpoint interpolation.  Cybernetics and Systems Analysis.  45 (1), 58–68 (2009).
  15. Collatz L., Krabs W.  Approximationstheorie. Tschebyscheffsche Approximation mit Anwendungen.  Teubner, Stuttgart (1973), (in German).
  16. DeVore R. A., Kunoth A.(eds.)  Nonlinear Approximation and Its Applications.  Multscale, Nonlinear and Adaptive Approximation.  169–201 (2009).
  17. Popov B. A.  Uniform Spline Approximation. Naukova Dumka, Kyiv (1989).
  18. Malachivskyy P. S., Melnychok L. S., Pizyur Y. V.  Chebyshev approximation of multivariable functions by the exponential expression.  Cybernetics and Systems Analysis.  57 (3), 429–435 (2021).
  19. Malachivskyy P. S., Melnychok L. S., Pizyur Y. V.  Chebyshev approximation of multivariable functions by logarithmic expression.  Cybernetics and Systems Analysis.  59 (2), 317–324 (2023).
  20. Malachivskyy P. S., Pizyur Y. V., Malachivskyi R. P.  Chebyshev approximation by a rational expression for functions of many variables.  Cybernetics and Systems Analysis.  56 (8), 811–819 (2020).
  21. Malachivskyy P. S., Melnychok L. S., Pizyur Y. V.  Chebyshev approximation of multivariable functions by a constrained rational expression.  Cybernetics and Systems Analysis.  59 (1), 146–159 (2023).
  22. Remez E. Ya.  Fundamentals of the Numerical Methods of Chebyshev Approximation.  Naukova Dumka, Kyiv (1969).
  23. Berljafa M., Guttel S.  The RKFIT algorithm for nonlinear rational approximation.  SIAM Journal on Scientific Computing.  39 (5), A2049–A2071 (2017).
  24. Gonnet P., Pachon R., Trefethen L. N.  Robust rational interpolation and least-squares.  Electronic Transactions on Numerical Analysis.  89, 146–167 (2011).
  25. Pachon R., Gonnet P., van Deun J.  Fast and stable rational interpolation in roots of unity and Chebyshev points.  SIAM Journal on Numerical Analysis.  50 (3), 1713–1734 (2012).