Dynamic learning rate adjustment using volatility in LSTM models for KLCI forecasting

2025;
: pp. 158–167
https://doi.org/10.23939/mmc2025.01.158
Received: November 19, 2024
Revised: February 08, 2025
Accepted: February 16, 2025

Shakawi A. M. H. A., Shabri A.  Dynamic learning rate adjustment using volatility in LSTM models for KLCI forecasting.  Mathematical Modeling and Computing. Vol. 12, No. 1, pp. 158–167 (2025)

1
Centre for Pre University Studies, University Malaysia Sarawak; Department of Mathematical Sciences, Faculty of Science, University Technology Malaysia
2
Department of Mathematical Sciences, Faculty of Science, University Technology Malaysia

The prediction of financial market behaviour constitutes a multifaceted challenge, attributable to the underlying volatility and non-linear characteristics inherent within market data.  Long Short-Term Memory (LSTM) models have demonstrated efficacy in capturing these complexities.  This study proposes a novel approach to enhance LSTM model performance by modulating the learning rate adaptively based on market volatility.  We apply this method to forecast the Kuala Lumpur Composite Index (KLCI), leveraging volatility as a key input to adapt the learning rate during training.  By integrating volatility into the learning process, the model can better accommodate market fluctuations, potentially leading to more accurate and robust predictions.  The proposed dynamic learning rate adjustment mechanism operates by scaling the learning rate according to the most recent volatility measurements, ensuring that the model adapts swiftly to changing market conditions.  This approach contrasts with traditional static learning rates, that may fail to sufficiently account for the dynamic of financial markets.  We conduct extensive experiments using historical KLCI data, comparing our proposed model with standard LSTM and other baseline models.  The results demonstrate that our volatility-adjusted learning rates outperform conventional LSTM models with fixed learning rates with respect to predictive performance and stability.  The findings suggest that incorporating volatility into learning rate adjustments can significantly enhance the predictive capability of LSTM models for stock market forecasting.  The improved forecasting accuracy of the KLCI index highlights the potential of this approach for broader applications in financial markets.

  1. Idrees S. M., Alam M. A., Agarwal P.  A prediction approach for stock market volatility based on time series data.  IEEE Access.  7, 17287–17298 (2019).
  2. Van Houdt G., Mosquera C., Nápoles G.  A review on the long short-term memory model.  Artificial Intelligence Review.  53 (8), 5929–5955 (2020).
  3. Al-Selwi S. M., Hassan M. F., Abdulkadir S. J., Muneer A., Sumiea E. H., Alqushaibi A., Ragab M. G.  RNN-LSTM: From applications to modeling techniques and beyond-Systematic review.  Journal of King Saud University – Computer and Information Sciences.  36 (5), 102068 (2024).
  4. Nacson M. S., Srebro N., Soudry D.  Stochastic gradient descent on separable data: Exact convergence with a fixed learning rate.  Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS).  PMLR 89, 3051–3059 (2019).
  5. Huang H., Huang X., Ding W., Zhang S., Pang J.  Optimization of electric vehicle sound package based on LSTM with an adaptive learning rate forest and multiple-level multiple-object method.  Mechanical Systems and Signal Processing.  187, 109932 (2023).
  6. Yu C., Qi X., Ma H., He X., Wang C., Zhao Y.  LLR: Learning learning rates by LSTM for training neural networks.  Neurocomputing.  394, 41–50 (2020).
  7. Iiduka H.  Appropriate learning rates of adaptive learning rate optimization algorithms for training deep neural networks.  IEEE Transactions on Cybernetics.  52 (12), 13250–13261 (2021).
  8. Loizou N., Vaswani S., Laradji I. H., Lacoste-Julien S.  Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence.  Proceedings of Machine Learning Research.  130, 1306–1314 (2021).
  9. Kingma D., Ba J.  Adam: A Method for Stochastic Optimization.  Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015), San Diego (2015).
  10. Tieleman T., Hinton G.  Lecture 6.5-rmsprop: Divide the Gradient by a Running Average of Its Recent Magnitude.  COURSERA: Neural Networks for Machine Learning.  4, 26–31 (2012).
  11. Duchi J., Hazan E., Singer Y.  Adaptive subgradient methods for online learning and stochastic optimization.  Journal of Machine Learning Research.  12 (61), 2121–2159  (2011).
  12. Zeiler M. D.  ADADELTA: An Adaptive Learning Rate Method.  Preprint arXiv:1212.5701 (2012).
  13. Loshchilov I., Hutter F.  Decoupled Weight Decay Regularization.  Preprint arXiv:1711.05101 (2017).
  14. Dozat T.  Incorporating Nesterov momentum into Adam.  Proceedings of 4th International Conference on Learning Representations (ICLR), Workshop Track.  1–4 (2016).
  15. Xie Z., Wang X., Zhang H., Sato I., Sugiyama M.  Adaptive inertia: Disentangling the effects of adaptive learning rate and momentum.  International Conference on Machine Learning.  24430–24459 (2022).
  16. Tong Q., Liang G., Bi J.  Calibrating the adaptive learning rate to improve convergence of ADAM.  Neurocomputing.  481, 333–356 (2022).
  17. Hao X., Ma Y., Pan D.  Geopolitical risk and the predictability of spillovers between exchange, commodity and stock markets.  Journal of Multinational Financial Management.  73, 100843 (2024).
  18. Zhang F., Zhang Y., Xu Y., Chen Y.  Dynamic relationship between volume and volatility in the Chinese stock market: Evidence from the MS-VAR model.  Data Science and Management.  7 (1), 17–24 (2024).
  19. Shakawi A. M. H. A., Shabri A.  Improving Prediction of Bursa Malaysia Stock Index Using Time Series and Deep Learning Hybrid Model.  Advances in Intelligent Computing Techniques and Applications.  119–128 (2024).
  20. Liang C., Wang L., Duong D.  More attention and better volatility forecast accuracy: How does war attention affect stock volatility predictability?  Journal of Economic Behavior & Organization.  218, 1–19 (2024).
  21. Jepkoech J., Mugo D. M., Kenduiywo B. K., Too E. C.  The effect of adaptive learning rate on the accuracy of neural networks.  International Journal of Advanced Computer Science and Applications.  12 (8), 736–751 (2021).
  22. Park J., Yi D., Ji S.  A novel learning rate schedule in optimization for neural networks and it's convergence.  Symmetry.  12 (4), 660 (2020).
  23. Wilder J. W.  New concepts in technical trading systems.  Greensboro, NC: Trend Research (1978).
  24. Atkins A., Niranjan M., Gerding E.  Financial news predicts stock market volatility better than close price.  The Journal of Finance and Data Science.  4 (2), 120–137 (2018).
  25. Mienye I. D., Swart T. G., Obaido G.  Recurrent Neural Networks: A Comprehensive Review of Architectures, Variants, and Applications.  Information.  15 (9), 517 (2024).
  26. Hochreiter S., Schmidhuber J.  Long Short-Term Memory.  Neural Computation.  9 (8), 1735–1780 (1997).
  27. Ho M. K., Darman H., Musa S.  Stock price prediction using ARIMA, neural network and LSTM models.  Journal of Physics: Conference Series.  1988 (1), 012041 (2021).
  28. Malim T. N. A. B. T., Kamarudin S. A., Ahad N. A., Mamat N. A. M. G.  Prediction of FTSE Bursa Malaysia KLCI Stock Market using LSTM Recurrent Neural Network.  2022 IEEE International Conference on Computing (ICOCO).  415–418 (2022).
  29. Khalil M. R. A., Bakar A. A.  A Comparative Study of Deep Learning Algorithms in Univariate and Multivariate Forecasting of the Malaysian Stock Market.  Sains Malaysiana.  52 (3), 993–1009 (2023).