Estimates of solutions for ambiguously solvable linear matrix equations

2025;
: pp. 10–21
https://doi.org/10.23939/mmc2025.01.010
Received: March 03, 2024
Revised: December 16, 2024
Accepted: December 19, 2024

Nakonechnyi O. G., Zinko P. M., Zinko T. P.  Estimates of solutions for ambiguously solvable linear matrix equations.  Mathematical Modeling and Computing. Vol. 12, No. 1, pp. 10–21 (2025)

1
Taras Shevchenko National University of Kyiv
2
Taras Shevchenko National University of Kyiv
3
Taras Shevchenko National University of Kyiv

The article examines the problem of estimating solutions of operator equations under conditions of uncertainty.  We obtain the expressions for guaranteed errors of solutions of indefinite linear equations in the spaces of rectangular matrices in the presence of additional data with deterministic errors belonging to special sets.  In a particular case, explicit formulas are obtained for guaranteed linear vector estimates and guaranteed vector estimation errors and for guaranteed posterior estimates and measurement errors.  These estimation results are illustrated by a test example in the case of operators that act in the space of $2\times 2$ matrices with a non-zero kernel.

  1. Yue S.  Application of Random Matrix Theory in Statistics and Machine Learning.  Publicly Accessible Penn Dissertations. 4146 (2021).
  2. Ke Y., Minsker S,, Ren Z., Sun Q., Zhou W.-X.  Uzer-friendly covariance estimation for heavy-tailed distributions.  Statistical Science.  34 (3), 454–471 (2019).
  3. Lopéz R. C.  Robust estimation of the mean a random matrix: a non-asymptotic study.  Tesis que para obtener el grado de Maestro en Ciencias con  Orientación en Probabilidad y Estadística.  Centro de Investigacion en Matematicas, A.C. (2020).
  4. Battey H., Fan J., Lu J., Zhu Z.  Distributed testing and estimation under sparse high dimensional models.  Annals of Statistics.  46 (3), 1352–1382 (2018).
  5. Cai T. T., Wei H.  Distributed Gaussian mean estimation under communication constraints: Optimal rates and communication-efficient algorithms.  Preprint arXiv: 2001.08877 (2020).
  6. Ke T., Ma Y., Lin X.  Estimation of the number of spiked eigenvalues in a covariance matrix by bulk eigenvalue matching analysis.  Preprint arXiv: 2006.00436 (2020).
  7. McKennan C.  Factor analysis in high dimensional biological data with dependent observations.  Preprint arXiv: 2009.11134 (2020).
  8. Sourav Chatterjee.  Matrix Estimation by Universal Singular Value Thresholding.  Annals of Statistics.  43 (1), 177–214 (2015).
  9. Kapustian O. A., Nakonechnyi O. G.  Approximate Minimax Estimation of Functionals of Solutions to the Wave Equation under Nonlinear Observations.  Cybernetics and Systems Analysis.  56 (5), 793–801 (2020).
  10. Nakonechnyi O. G., Kudin G. I., Zinko P. M., Zinko T. P.  Harantovani serednokvadratychni otsinky sposterezhen iz nevidomymy matrytsiamy.  Zhurnal obchysliuvalnoi ta prykladnoi matematyky.  2, 98–115 (2022).
  11. Nakonechniy O. G., Kudin G. I., Zinko P. M., Zinko T. P., Shusharin Y. V.  Guaranteed root mean square estimates of linear matrix equations solutions under conditions of uncertainty.  Mathematical Modeling and Computing.  10 (2), 474–486 (2023).
  12. Nakonechniy O. G., Kudin G. I., Zinko P. M., Zinko T. P.  Guaranteed root mean square estimates of the forecast of matrix observations under conditions of statistical uncertainty.  System Research and Information Technologies.  2, 86–103 (2023).
  13. Nakonechniy O. G., Zinko P. M.  Estimates of matrix solutions of operator equations with random parameters under of uncertainties.  Mathematychni Studii.  60 (2), 208–222 (2023).