Malaria dynamics of transmission for individuals with multi-layered susceptibility

2025;
: pp. 323–330
https://doi.org/10.23939/mmc2025.01.323
Received: December 20, 2024
Revised: March 21, 2025
Accepted: March 22, 2025

Chacha G. W., Siddik S. B. M., Fatmawati.  Malaria dynamics of transmission for individuals with multi-layered susceptibility.  Mathematical Modeling and Computing. Vol. 12, No. 1, pp. 323–330 (2025)    

1
Mathematics and Information and Communication Technology Department, The Open University of Tanzania, Tabora Regional Centre; Institute of Engineering Mathematics, Universiti Malaysia Perlis
2
Institute of Engineering Mathematics, Universiti Malaysia Perlis
3
Department of Mathematics, Faculty of Science, Universitas Airlangga

The alarming prevalence of vector-borne diseases, such as malaria, has long been a global concern due to their ability to infect individuals across all social classes, thus leading to high morbidity and mortality rates.  This study investigates the role of mosquito bites frequency in dynamics of transmission of malaria.  Mainly, featuring the mathematical classification of susceptible individuals into high and low risk.  The present study employs a time-dependent, social hierarchy-structured deterministic model to analyse the vulnerability of multi-layered classes to the transmission dynamics of malaria disease.  This analysis takes into account the interaction between the human population and the mosquito vector population.  Human infection statuses are divided into four categories: susceptible, infected, and recovered individuals, with further stratification of susceptible individuals based on their risk level.  Concurrently, the total vector population is divided into susceptible and infected mosquitoes.  The disease free equilibrium, basic reproduction number and endemic equilibrium were computed. The findings show that the higher the number susceptible humans subjected to high risk the higher number of infected human individuals.

  1. Ngonghala C.  The impact of temperature and decay in insecticide-treated net efficacy on malaria prevalence and control.  Mathematical Biosciences.  355, 108936 (2023).
  2. Orwa T., Mbogo R., Luboobi L.  Optimal control analysis of hepatocytic-erythrocytic dynamics of Plasmodium falciparum malaria.  Infectious Disease Modelling.  7, 82–108 (2022).
  3. Olaniyi S., Mukamuri M., Okosun K., Adepoju O.  Mathematical analysis of a social hierarchy-structured model for malaria transmission dynamics.  Results in Physics.  34, 104991 (2022).
  4. Ngonghala C., Wairimu J., Adamski J., Desai H.  Impact of adaptive mosquito behavior and insecticide-treated nets on malaria prevalence.  Journal Of Biological Systems.  28 (02), 515–542 (2020).
  5. Ibrahim M., Dénes A.  Threshold and stability results in a periodic model for malaria transmission with partial immunity in humans.  Applied Mathematics and Computation.  392, 125711 (2021).
  6. Forouzannia F., Gumel A. B.  Mathematical analysis of an age-structured model for malaria transmission dynamics.  Mathematical Biosciences.  247, 80–94 (2014).
  7. Ngonghala C. N.  Assessing the impact of insecticide-treated nets in the face of insecticide resistance on malaria control.  Journal of Theoretical Biology.  555, 111281 (2022).
  8. Collins O. C., Duffy K. J.  A mathematical model for the dynamics and control of malaria in Nigeria.  Infectious Disease Modelling.  7 (4), 728–741 (2022).
  9. Orish V., Afutu L., Ayodele O., Likaj L., Marinkovic A., Sanyaolu A.  A 4-day incubation period of Plasmodium falciparum infection in a nonimmune patient in Ghana: A case report.  Open Forum Infectious Diseases.  6 (1), ofy169 (2019).
  10. Bamou R., Tchuinkam T., Kopya E., Awono-Ambene P., Njiokou F., Mwangangi J., Antonio-Nkondjio C.  Knowledge, attitudes, and practices regarding malaria control among communities living in the south Cameroon forest region.  IJID Regions.  5, 169–176 (2022).
  11. Mohammed-Awel J., Gumel A. B.  Mathematics of an epidemiology-genetics model for assessing the role of insecticides resistance on malaria transmission dynamics.  Mathematical Biosciences.  312, 33–49 (2019).
  12. Driessche P., Watmough J.  Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission.  Mathematical Biosciences.  180 (1–2), 29–48 (2002).
  13. Tchoumi S. Y., Njintang N. Y., Kamgang J. C., Tchuenche J. M.  Malaria and malnutrition in children: A mathematical model.  Franklin Open.  3, 100013 (2023).
  14. Tchoumi S., Dongmo E., Kamgang J., Tchuenche J.  Dynamics of a two-group structured malaria transmission model.  Informatics In Medicine Unlocked.  29, 100897 (2022).
  15. Chitnis N.  Using mathematical models in controlling the spread of malaria.  The University of Arizona (2005).
  16. Buonomo B., Vargas-De-León C.  Stability and bifurcation analysis of a vector-bias model of malaria transmission.  Mathematical Biosciences.  242 (1), 59–67 (2013).
  17. Allehiany F. M., DarAssi M. H., Ahmad I., Khan M. A., Tag-eldin E. M.  Mathematical modeling and backward bifurcation in monkeypox disease under real observed data.  Results In Physics.  50, 106557 (2023).