Modeling short term interest rates using the Vasicek and Cox–Ingersoll–Ross models

2025;
: pp. 212–220
https://doi.org/10.23939/mmc2025.01.212
Received: November 19, 2024
Revised: February 17, 2025
Accepted: February 19, 2025

Md Sa'at A. S., Shair S. N., Md Lazam N., Yusof A. Y., Mohd Amin M. N., Ibrahim R. I., Mohd Ghani N. A.  Modeling short term interest rates using the Vasicek and Cox–Ingersoll–Ross models.  Mathematical Modeling and Computing. Vol. 12, No. 1, pp. 212–220 (2025) 

1
School of Mathematical Sciences, College of Computing, Informatics and Mathematics, University Teknologi MARA (UiTM)
2
School of Mathematical Sciences, College of Computing, Informatics and Mathematics, University Teknologi MARA (UiTM); Research Interest Group of Actuarial Risk, Analytics and Takaful, Universiti Teknologi MARA (UiTM)
3
School of Mathematical Sciences, College of Computing, Informatics and Mathematics, University Teknologi MARA (UiTM); Research Interest Group of Actuarial Risk, Analytics and Takaful, Universiti Teknologi MARA (UiTM)
4
School of Mathematical Sciences, College of Computing, Informatics and Mathematics, University Teknologi MARA (UiTM)
5
School of Mathematical Sciences, College of Computing, Informatics and Mathematics, University Teknologi MARA (UiTM); Research Interest Group of Actuarial Risk, Analytics and Takaful, Universiti Teknologi MARA (UiTM)
6
Faculty of Science and Technology, University Sains Islam Malaysia
7
School of Mathematical Sciences, College of Computing, Informatics and Mathematics, University Teknologi MARA (UiTM)

In modeling future uncertainties, the time value of money effect is often minimally addressed.  Many models assume constant rates, leading to potential errors in financial instrument pricing.  This study explores continuous-time interest rate models to capture future uncertainties of interest rates.  Two stochastic interest rate models, the Vasicek and Cox–Ingersoll–Ross (CIR), will be adopted, and their forecast performance will be evaluated.  Using the Maximum Likelihood Estimation (MLE), the models are fitted to Kuala Lumpur Interbank Offered Rate (KLIBOR) data (1-month, 3-month, and 12-month rates).  Subsequently, the goodness-of-fit and forecast accuracies of both models were analysed.  Results show that the Vasicek model is superior based on AIC, BIC, MSE, RMSE, and MAPE measures.  The Vasicek model outperforms CIR, especially for 12-month rates.  Finally, this study estimates zero-coupon bond prices and develops the term structure of interest rates, revealing an inverted yield curve.

  1. Liu C., Sherris M.  Immunization and Hedging of Post Retirement Income Annuity Products.  Risks.  5 (1), 19 (2017).
  2. Redington F. M.  Review of the Principles of Life-office Valuations.  Journal of the Institute of Actuaries.  78 (3), 286–340 (1952).
  3. Shiu E. S. W.  On the Fisher-Weil immunization theorem.  Insurance: Mathematics and Economics.  6 (4), 259–266 (1987).
  4. Shiu E. S. W.  Immunization of multiple liabilities.  Insurance: Mathematics and Economics.  7 (4), 219–224 (1988).
  5. Shiu E. S. W.  On Redington's theory of immunization.  Insurance: Mathematics and Economics.  9 (2–3), 171–175 (1990).
  6. Itô K.  Stochastic Processes: Lectures given at Aarhus University.  Springer Berlin, Heidelberg (2007).
  7. Hull J.  Equilibrium Models of the Short Rate.  Futures and Other Derivatives  (2022).
  8. Kellison S.  Stochastic Approaches to Interest.  The Theory of Interest (2008).
  9. Vasicek O.  An equilibrium characterization of the term structure.  Journal of Financial Economics.  5 (2), 177–188 (1977).
  10. Cox J. C., Ingersoll J. E., Ross S. A.  A theory of the term structure of interest rates.  Econometrica.  53 (2), 385–407 (1985).
  11. Chang Y., Sherris M.  Longevity Risk Management and the Development of a Value-Based Longevity Index.  Risks.  6 (1), 10 (2018).
  12. Halgašová J., Stehlíková B., Bučková Z.  Estimating the Short Rate from the Term Structures in the Vasicek Model.  Tatra Mountains Mathematical Publications.  61 (1), 87–103 (2015).
  13. Fergusson K., Platen E.  Application of Maximum Likelihood Estimation To Stochastic Short Rate Models.  Annals of Financial Economics.  10 (02), 1550009 (2015).
  14. Bao N. K. Q., Hong D. T. T.  On the Effect of Interest Rates Dynamics on Vietnamese Companies.  International Journal of Economics and Finance.  7 (5), 147–152 (2015).
  15. Sulma S., Widana I. N., Toaha S., Fitria I.  Comparison of projected unit credit and entry age normal methods in pension fund Vasicek and Cox–Ingersoll–Ross models.  BAREKENG: Jurnal Ilmu Matematika dan Terapan.  17 (4), 2421–2432 (2023).
  16. Ding Y.  The Practicality of Vasicek Model in China's Financial Market.  SHS Web of Conferences.  163, 01016 (2023).
  17. Lian K. K.  Sectoral Beta Forecasts of Securities in a Thin Capital Market: A Case of Malaysia.  Jurnal Pengurusan. 16, 13–32 (1997).
  18. Nadarajan S., Nur-Firyal R.  Comparing Vasicek Model with ARIMA and GBM in Forecasting Bursa Malaysia Stock Prices.  Proceedings of the 29th National Symposium on Mathematical Sciences.  2905 (1), 050004 (2024).
  19. Chiet K. W.  Pricing of Annuities with Guaranteed Minimum Withdrawal Benefits under Stochastic Interest Rates. Thesis, Universiti Tunku Abdul Rahman (2016).
  20. https://financialmarkets.bnm.gov.my/
  21. Shair S. N., Yusof A. Y., Asmuni N. H.  Evaluation of the product ratio coherent model in forecasting mortality rates and life expectancy at births by states.  AIP Conference Proceedings.  1842 (1), 030010 (2017).