Numerical simulation of bi-disperse polymer flow in complex geometries using Rolie–Double–Poly model within OpenFOAM software

2025;
: pp. 248–263
Received: November 19, 2024
Revised: February 24, 2025
Accepted: February 25, 2025

Azahar A. A., Oliver G. H., Mark A. W., Ramli N.  Numerical simulation of bi-disperse polymer flow in complex geometries using Rolie–Double–Poly model within OpenFOAM software.  Mathematical Modeling and Computing. Vol. 12, No. 1, pp. 248–263 (2025)     

1
School of Mathematical Sciences, University Sains Malaysia
2
School of Mathematics, University of Leeds
3
School of Computing, University of Leeds
4
School of Mathematical Sciences, University Sains Malaysia

Modeling the behavior of bi-disperse, linearly entangled polymers blends using the Rolie–Double–Poly constitutive equation is essential for understanding the reliability of the model in simulating complex flow behaviors.  This study examines the extensional response of polymer blends, particularly the stretching of chains under pure extensional flow along the centre-line in two flow geometries: hyperbolic contraction flow and cross-slot flow with hyperbolic corners.  Coupled and uncoupled models were implemented within the OpenFOAM software via the \texttt{RheoTool} toolbox where the simulations use the rheoFoam solver to model incompressible viscoelastic fluid flow.  The effect including the contraction lengths, blend composition of chain lengths, and chain coupling are the key factors in this studies.  One significant results reveal that the Rolie–Double–Poly model more accurately captures the extensional behavior of polymer chains compared to the uncoupled model underscoring its potential applicability for more complex, polydisperse systems.

 

  1. Maxwell J. C.  IV. On the dynamical theory of gases.  Philosophical Transactions of the Royal Society of London.  157, 49–88 (1867).
  2. Boudara V. A., Peterson J. D., Leal L. G., Read D. J.  Nonlinear rheology of polydisperse blends of entangled linear polymers: Rolie-Double-Poly models.  Journal of Rheology.  63 (1), 71–91 (2019).
  3. Graham R. S., Likhtman A. E., McLeish T. C. B., Milner S. M.  Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release.  Journal of Rheology.  47 (5), 1171–1200 (2003).
  4. De Gennes P. G.  Reptation of a polymer chain in the presence of fixed obstacles.  The Journal of Chemical Physics.  55 (2), 572–579 (1971).
  5. Doi M., Edwards S. F., Edwards S. F.  The theory of polymer dynamics.  Oxford University Press. Vol. 73 (1988).
  6. Auhl D., Ramirez J., Likthman A. E., Chambon P., Fernyhough C.  Linear and nonlinear shear flow behavior of monodisperse polyisoprene melts with a large range of molecular weights.  Journal of Rheology.  52 (3), 801–835 (2008).
  7. Taghipour H., Salvatore C., Dimitris V., Evelyne V. R., Laurence G. D. H.  Entangled linear polymers in fast shear flows: Comparison of tube-model predictions and experimental data.  Journal of Rheology.  65 (6), 572–579 (2021).
  8. Anwar M., Graham R. S.  Nonlinear shear of entangled polymers from nonequilibrium molecular dynamics.  Journal of Polymer Science Part B: Polymer Physics.  57 (24), 1692–1704 (2019).
  9. Tezel A. K., Oberhauser J. P., Graham R. S., Jagannathan K., McLeish T. C., Leal L. G.  The nonlinear response of entangled star polymers to startup of shear flow.  Journal of Rheology.  53 (5), 1193–1214 (2009).
  10. Likhtman A. E., Graham R. S.  Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie–Poly equation.  Journal of Non-Newtonian Fluid Mechanics.  114 (1), 1–12 (2003).
  11. Lord T. D., Scelsi L., Hassell D. G., Mackley M. R., Embery J., Auhl D., Harlen O. G., Tenchev R., Jimack P. K., Walkley M. A.  The matching of 3D Rolie-Poly viscoelastic numerical simulations with experimental polymer melt flow within a slit and a cross-slot geometry.  Journal of Rheology.  54 (2), 355–373 (2010).
  12. Collis M. W., Lele A. K., Mackley M. R., Graham R. S., Groves D. J., Likhtman A. E., Nicholson T. M., Harlen O. G., McLeish T. C. B., Hutchings L. R., Fernyhough C. M., Young R. N.  Constriction flows of monodisperse linear entangled polymers: Multiscale modeling and flow visualization.  Journal of Rheology.  49 (2), 501–522 (2005).
  13. Taghipour H., Hawke L. G.  Entangled linear polymers in fast shear and extensional flows: evaluating the performance of the Rolie–Poly model.  Rheologica Acta.  60 (10), 617–641 (2021).
  14. Peterson J. D., Cromer M., Fredrickson G. H., Gary Leal L.  Shear banding predictions for the two-fluid Rolie–Poly model.  Journal of Rheology.  60 (5), 927–951 (2016).
  15. Reis T., Wilson H. J.  Rolie–Poly fluid flowing through constrictions: Two distinct instabilities. Journal of Non-Newtonian Fluid Mechanics.  195, 77–87 (2013).
  16. Adams J. M., Fielding S. M., Olmsted P. D.  Transient shear banding in entangled polymers: A study using the Rolie–Poly model.  Journal of Rheology.  55 (5), 1007–1032 (2011).
  17. Des Cloizeaux J.  Double reptation vs. simple reptation in polymer melts.  Europhysics Letters.  5 (5), 437 (1988).
  18. Nystrom M., Tamaddon Jahromi H. R., Stading M., Webster M. F.  Numerical simulations of Boger fluids through different contraction configurations for the development of a measuring system for extensional viscosity.  Rheologica Acta.  51, 713–727 (2012).
  19. Cogswell F. N.  Converging flow and stretching flow: a compilation.  Journal of Non-Newtonian Fluid Mechanics.  4 (1–2), 23–38 (1978).
  20. Nyström M., Tamaddon Jahromi H. R., Stading M., Webster M. F.  Hyperbolic contraction measuring systems for extensional flow.  Mechanics of Time-Dependent Materials.  21, 455–479 (2017).
  21. Kim H. C., Pendse A., Collier J. R.  Polymer melt lubricated elongational flow.  Journal of Rheology.  38, (4) 831–845 (1994).
  22. Collier J. R., Romanoschi O., Petrovan S.  Elongational rheology of polymer melts and solutions.  Journal of Applied Polymer Science.  69 (12), 2357–2367 (1998).
  23. Cruz F. A., Poole R. J., Afonso A. M., Pinho F. T., Oliveira P. J., Alves M. A.  A new viscoelastic benchmark flow: Stationary bifurcation in a cross-slot.  Journal of Non-Newtonian Fluid Mechanics.  214, 57–68 (2014).
  24. Kordalis A., Varchanis S., Ioannou G., Dimakopoulos Y., Tsamopoulos J.  Investigation of the extensional properties of elasto-visco-plastic materials in cross-slot geometries.  Journal of Non-Newtonian Fluid Mechanics.  296, 104627 (2021).
  25. Davoodi M., Domingues A. F., Poole R. J.  Control of a purely elastic symmetry-breaking flow instability in cross-slot geometries.  Journal of Fluid Mechanics.  881, 1123–1157 (2019).
  26. Poole R. J., Rocha G. N., Oliveira P. J.  A symmetry-breaking inertial bifurcation in a cross-slot flow.  Computers & Fluids.  93, 91–99 (2014).
  27. Rocha G. N., Poole R. J., Alves M. A., Oliveira P. J.  On extensibility effects in the cross-slot flow bifurcation.  Journal of Non-Newtonian Fluid Mechanics.  156 (1–2), 58–69 (2019).
  28. Hassell D. G., Mackley M. R.  An experimental evaluation of the behavior of mono and polydisperse polystyrenes in cross-slot flow.  Rheologica Acta.  48, 543–550 (2009).
  29. Read D. J., Jagannathan K., Sukumaran S. K., Auhl D.  A full-chain constitutive model for bidisperse blends of linear polymers.  Journal of Rheology.  56 (4), 823–873 (2012).
  30. Auhl D., Chambon P., McLeish T. C., Read D. J.  Elongational flow of blends of long and short polymers: Effective stretch relaxation time.  Physical Review Letters.  103 (13), 136001 (2009).
  31. Weller H. G., Tabor G., Jasak H., Fureby C.  A tensorial approach to computational continuum mechanics using object-oriented techniques.  Computers in Physics.  12 (6), 620–631 (1998).
  32. Favero J. L., Secchi A. R., Cardozo N. S. M., Jasak H.  Viscoelastic flow simulation: development of a methodology of analysis using the software OpenFOAM and differential constitutive equations.  Computer Aided Chemical Engineering.  27, 915–920 (2009).
  33. Pimenta F., Alves M. A.  Stabilization of an open-source finite-volume solver for viscoelastic fluid flows.  Journal of Non-Newtonian Fluid Mechanics.  239, 85–104 (2017).
  34. Van Doormaal J. P., Raithby G. D.  Enhancements of the SIMPLE method for predicting incompressible fluid flows.  Numerical Heat Transfer.  7 (2), 147–163 (1984).
  35. Tenchev R., Gough T., Harlen O. G., Jimack P. K., Klein D. H., Walkley M. A.  Three-dimensional finite element analysis of the flow of polymer melts.  Journal of Non-Newtonian Fluid Mechanics.  166 (5–6), 307–320 (2011).