With the swift growth of urbanization and industrialization, fine particulate matter (PM$_{10}$) has escalated into a major global environmental crisis. PM$_{10}$ is often used as a haze indicator, severely affecting human health and ecosystem stability. Accurate prediction of PM$_{10}$ levels is crucial, but existing models face challenges in handling vast data and achieving high accuracy. This study investigates four years of PM$_{10}$ time series in industrial area in Malaysia. Paper aims to develop and compare haze predicting models using chaos theory, including the local linear approximation method (LLAM), local mean approximation method (LMAM); also several deep learning algorithms including convolutional neural network (CNN) and bidirectional LSTM. The performances of these models are evaluated using root mean square error (RMSE), correlation coefficient ($r$), and coefficient of determination ($R^2$). The result shows that Bi-LSTM provides the highest accuracy, LLAM outperforms CNN, while LMAM is reliable but less precise.
- Kementerian Kesihatan Malaysia. Pelan tindakan pengurusan kesihatan akibat jerebu (2020).
- Latif M. T., Othman M., Kamin K. H. Fenomena Jerebu di Asia Tenggara: Punca dan Penyelesaian. Institut Alam Sekitar dan Pembangunan. 37, (2017).
- United States Environmental Protection Agency. Particulate Matter (PM) Basics, https://www.epa.gov/pm-pollution/particulate-matter-pm-basics (2024).
- Quah E., Chia W.-M., Tan T.-S. Economic impact of 2015 transboundary haze on Singapore. Journal of Asian Economics. 75, 101329 (2021).
- Latif M. T., Othman M., Idris N., Juneng L., Abdullah A. M., Hamzah W. P., Khan M. F., Nik Sulaiman N. M., Jewaratnam J., Aghamohammadi N., Sahani M., Jing Xiang C., Ahamad F., Amil N., Darus N., Varkkey H., Tangang F., Jaafar A. B. Impact of regional haze towards air quality in Malaysia: A review. Atmospheric Environment. 177, 28–44 (2018).
- Darman H., Abd Hamid N. Z. Predicting Haze Phenomenon using Chaos Theory in Industrial Area in Malaysia. Journal of Quality Measurement and Analysis. 20 (1), 159–169 (2024).
- Ul-Saufie A. Z., Yahaya A. S., Ramli N., Hamid H. A. Performance of multiple linear regression model for long-term PM10 concentration prediction based on gaseous and meteorological parameters. Journal of Applied Sciences. 12 (14), 1488–1494 (2012).
- Abd Hamid N. Z., Noorani M. S. Md. Suatu kajian perintis menggunakan pendekatan kalut bagi pengesanan sifat dan peramalan siri masa kepekatan PM10. Sains Malaysiana. 43 (3), 475–481 (2014).
- Shang K., Chen Z., Liu Z., Song L., Zheng W., Yang B., Liu S., Yin L. Haze prediction model using deep recurrent neural network. Atmosphere. 12 (12), 1625 (2021).
- Abdullah S., Ismail M., Yuen Fong S. Multiple linear regression (MLR) models for long term PM10 concentration forecasting during different monsoon seasons. Journal of Sustainability Science and Management. 12 (1), 60–69 (2017).
- Chen J., Wang J. Prediction of PM2.5 concentration based on multiple linear regression. 2019 International Conference on Smart Grid and Electrical Automation (ICSGEA). 457–460 (2019).
- Hasmarullzakim A. M., Abdullah A. Haze pattern prediction using deep learning. UTM Computing Proceedings. 3, 51–55 (2018).
- Idris A. C., Yassin H. Deep learning method for haze prediction in Singapore. 2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE). 1–6 (2021).
- Wu X., Liu Z., Yin L., Zheng W., Song L., Tian J., Yang B., Liu S. A haze prediction model in Chengdu based on LSTM. Atmosphere. 12 (11), 1479 (2021).
- Cao L. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D: Nonlinear Phenomena. 110 (1–2), 43–50 (1997).
- Mei F., Wu Q., Shi T., Lu J., Pan Y., Zheng J. An Ultrashort-Term Net Load Forecasting Model Based on Phase Space Reconstruction and Deep Neural Network. Applied Sciences. 9 (7), 1487 (2019).
- Hajiloo R., Salarieh H., Alasty A. Chaos control in delayed phase space constructed by the Takens embedding theory. Communications in Nonlinear Science and Numerical Simulation. 54, 453–465 (2018).
- Fraser A. M., Swinney H. L. Independent coordinates for strange attractors from mutual information. Physical Review A. 33 (2), 1134–1140 (1986).
- Chen J.-L., Islam S., Biswas P. Nonlinear dynamics of hourly ozone concentrations: nonparametric short term prediction. Atmospheric Environment. 32 (11), 1839–1848 (1998).
- Zafar A., Aamir M., Nawi N. M., Arshad A., Riaz S., Alruban A., Dutta A. K., Almotairi S. Comparison of Pooling Methods for Convolutional Neural Networks. Applied Sciences. 12 (17), 8643 (2022).
- Raihan A. S., Ahmed I. A Bi-LSTM Autoencoder Framework for Anomaly Detection – A Case Study of a Wind Power Dataset. 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE). 1–6 (2023).
- Sivakumar B. A phase-space reconstruction approach to prediction of suspended sediment concentration in rivers. Journal of Hydrology. 258 (1–4), 149–162 (2002).
- Chen J., Liu Z., Yin Z., Liu X., Li X., Yin L., Zheng W. Predict the effect of meteorological factors on haze using BP neural network. Urban Climate. 51, 101630 (2023).
- Liu Z., Liu X., Zhao K. Haze prediction method based on stacking learning. Stochastic Environmental Research and Risk Assessment (2023).
- Liu S., Luo Q., Feng M., Zhou L., Qiu Y., Li C., Song D., Tan Q., Yang F. Enhanced nitrate contribution to light extinction during haze pollution in Chengdu: Insights based on an improved multiple linear regression model. Environmental Pollution. 323, 121309 (2023).