A property of a particular generalized Petersen unit-distance graph

2025;
: pp. 461–467
https://doi.org/10.23939/mmc2025.02.461
Received: December 20, 2024
Revised: May 11, 2025
Accepted: May 17, 2025

Kaenthong N., Thongnork P., Thongroek P., Siriwong P.  A property of a particular generalized Petersen unit-distance graph.  Mathematical Modeling and Computing. Vol. 12, No. 2, pp. 461–460 (2025)  

1
Mathematics, Faculty of Education and Faculty of Science and Digital Innovation, Thaksin University
2
Mathematics, Faculty of Education and Faculty of Science and Digital Innovation, Thaksin University
3
Mathematics, Faculty of Education and Faculty of Science and Digital Innovation, Thaksin University
4
Mathematics and Data Management Program, Faculty of Science and Digital Innovation, Thaksin University

A generalized Petersen graph is a graph with $2n$ vertices, where each vertex has degree 3 and there are $3n$ edges.  A unit-distance graph is a graph with every edge of 1 unit  length.  We study the geometric transformation of a generalized Petersen graph into a generalized Petersen unit-distance graph and the rotation angles of the $n$-pointed star of the generalized Petersen unit-distance graph.  Then, we obtain the properties of the generalized Petersen unit-distance graph and the rotation angles of the $n$-pointed star of the generalized Petersen unit-distance graph by using geometric transformations, trigonometric functions, and the rule of sine and cosine, along with similar polygons.

  1. Pritikin D.  All unit-distance graphs of order 6197 are 6-colorable.  Journal of Combinatorial Theory, Series B.  73 (2), 159–163 (1998).
  2. Payne M. S.  Unit distance graphs with ambiguous chromatic number.  Electronic Journal of Combinatorics.  16 (1), N31 (2009).
  3. Voronov V. A., Neopryatnaya A. M., Dergachev E. A.  Constructing 5-chromatic unit distance graphs embedded in the Euclidean plane and two-dimensional spheres.  Discrete Mathematics.  345 (12), 113106 (2022).
  4. Buckley F., Harary F.  On the euclidean dimension of a wheel.  Graphs and Combinatorics.  4 (1), 23–30 (1988).
  5. Horvat B., Pisanski T.  Products of unit distance graphs.  Discrete Mathematics.  310 (12), 1783–1792 (2010).
  6. Gervacio S. V., Lim Y. F., Maehara H.  Planar unit-distance graphs having planar unit-distance complement.  Discrete Mathematics.  308 (10), 1973–1984 (2008).
  7. Gehér P., Tóth G.  $1$-planar unit distance graphs.  International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl – Leibniz-Zentrum für Informatik.  320, 6:1–6:9 (2024).
  8. Bagchi B., Panigrahi P., Sahoo U.  On the Strongly Regular Unit Distance Graphs.  Journal of Combinatorial Mathematics and Combinatorial Computing.  089, 293–302 (2014).
  9. Griffiths M.  A property of a particular unit-distance graph.  The Mathematical Gazette.  103 (557), 353–356 (2019).
  10. Zitnik A., Horvat B., Pisanski T.  All generalized Petersen graphs are unit-distance graph.  Journal of the Korean Mathematical Society.  49 (3), 475–491 (2012).
  11. Deo N.  Graph Theory with Applications to Engineering and Computer Science.  Prentice Hall (1974).
  12. West D. B.  Introduction to Graph Theory.  Prentice Hall, 2nd edition (2001).
  13. Laker K. R., Sasen W. M. C.  Design of Analog Integrated Circuits and Systems.  McGraw-Hilll (1994).