Computer Modeling of Memristive Electromagnetic Radiation Effect on a Five-Dimensional Neural Network

2025;
: pp. 1367–1380
Received: April 21, 2025
Revised: October 13, 2025
Accepted: October 20, 2025

Kopp M. I.  Computer Modeling of Memristive Electromagnetic Radiation Effect on a Five-Dimensional Neural Network.  Mathematical Modeling and Computing. Vol. 12, No. 4, pp. 1367–1380 (2025)

Authors:
1
Institute for Single Crystals, NAS Ukraine

This paper introduces a novel five-dimensional memristive artificial neural network (ANN) incorporating a flux-controlled memristor to model the effects of external electromagnetic radiation on neuronal dynamics.  The network is mathematically formulated as a six-dimensional nonlinear dynamical system, where the additional dimension accounts for the memristive state variable.  A comprehensive dynamical analysis is performed, including bifurcation diagrams, Lyapunov exponents, Kaplan-Yorke dimension, time-domain responses, and phase portraits, revealing complex chaotic behaviors.  The theoretical predictions are validated through electronic circuit simulations using Multisim software.  Furthermore, a synchronization model incorporating two coupled memristive subnetworks is developed to emulate interregional synchronization phenomena observed in biological neural systems.

  1.  Chua L. O.  Memristor – The missing circuit element.  IEEE Transactions on Circuit Theory.  18 (5), 507–519 (1971).
  2. Strukov D. B., Snider G. S., Stewart D. R., Williams R. S.  The missing memristor found.  Nature.  453, 80–83 (2008).
  3. Xiao Z., Yan B., Zhang T., Huang R., Yang Y.  Memristive devices-based hardware for unlabeled data processing.  Neuromorphic Computing and Engineering.  2 (2), 022003 (2022).
  4. Yang J. J., Pickett M. D., Li X., Ohlberg D. A. A., Stewart D. R., Williams R. S.  Memristive switching mechanism for metal/oxide/metal nanodevices.  Nature Nanotechnology.  3 (7), 429–433 (2008).
  5. Junsangsri P., Lombardi F.  Design of a hybrid memory cell using memristance and ambipolarity.  IEEE Transactions on Nanotechnology.  12 (1), 71–80 (2013).
  6. Kopp M. I.  A New Memristor-Based 4D Hyperchaotic System with Seven Terms and No Equilibrium Points.  Nonlinear Dynamics and Systems Theory.  3 (5), 288–298 (2025).
  7. Vaidyanathan S.  Adaptive Control of the Fitzhugh-Nagumo Chaotic Neuron Model.  International Journal of PharmTech Research.  8 (6), 117–127 (2015).
  8. Choi S., Ham S., Wang G.  Memristor Synapses for Neuromorphic Computing, Memristors – Circuits and Applications of Memristor Devices.  IntechOpen (2019).
  9. Lin H., Wang C., Deng Q., Xu C., Deng Z., Zhou C.  Review on chaotic dynamics of memristive neuron and neural network.  Nonlinear Dynamics.  106, 959–973 (2021).
  10. Lin H., Wang C., Yu F., Sun J., Du S., Deng Z., Deng Q.  A Review of Chaotic Systems Based On Memristive Hopfield Neural Networks.  Mathematics.  11 (6), 1369 (2023).
  11. Haykin S.  Neural Networks: A Comprehensive Foundation.  Prentice-Hall, Englewood Cliffs (1998).
  12. Sprott J. C.  Chaotic dynamics on large networks.  Chaos.  18 (2), 023135 (2008).
  13. Sprott J. C.  Elegant Chaos. Algebraically Simple Chaotic Flows.  World Scientific Publishing Company (2010).
  14. Samuilik I., Sadyrbaev F., Ogorelova D.  Comparative Analysis of Models of Gene and Neural Networks.  Contemporary Mathematics.  4 (2), 217–229 (2023).
  15. Ogorelova D., Sadyrbaev F.  Remarks on the Mathematical Modeling of Gene and Neuronal  Networks by Ordinary Differential Equations.  Axioms.  13 (1), 61 (2024).
  16. Kopp M. I., Samuilik I. I.  Computer modeling and circuit implementation of a fivedimensional artificial neural network system.  X International Scientific-Practical Conference Physical and Technological Problems of Transmission, Processing and Storage of Information in Infocommunication Systems, 15–17 May 2025, Chernivtsi, Ukraine. Book of Abstracts. 92–93 (2025).
  17. Kopp M. I., Samuilik I.  Chaotic dynamics in Sprott's memristive artificial neural network: dynamic analysis, circuit implementation and synchronization.  AIMS Mathematics.  10 (8), 19240–19266 (2023).
  18. Samuilik I., Sadyrbaev F., Atslega S.  On mathematical models of artificial neural networks.  Proceedings of 22nd International Scientific Conference Engineering for Rural Development, May 24-26, 45-50 (2023).
  19. Lin H., Wang C., Yao W., Tan Y.  Chaotic dynamics in a neural network with different types of external stimuli.  Communications in Nonlinear Science and Numerical Simulation.  90, 105390 (2020).
  20. Sundarapandian V., Volos Ch.  Advances in Memristors, Memristive Devices and Systems.  Springer, Cham, Switzerland (2017).
  21. Benettin G., Galgani L., Giorgilli A., Strelcyn J.-M.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them.  Part 1: Theory.  Meccanica.  15, 9–20 (1980).
  22. Wolf A., Swift J. B., Swinney H. L., Vastano J. A.  Determining Lyapunov Exponents from a Time Series.  Physica D.  16 (3), 285–317 (1985).
  23. Binous H., Zakia N.  An Improved Method for Lyapunov Exponents Computation.  https://library.wolfram.com/infocenter/MathSource/7109/ (2008).
  24. Sandri M.  Numerical Calculation of Lyapunov Exponents.  The Mathematica Journal.  6 (3), 78–84 (1996).
  25. Frederickson P., Kaplan J. L., Yorke E. D., Yorke J. A.  The Liapunov Dimension of Strange Attractors.  Journal of differential equations.  49, 185–207 (1983).