This paper introduces a novel five-dimensional memristive artificial neural network (ANN) incorporating a flux-controlled memristor to model the effects of external electromagnetic radiation on neuronal dynamics. The network is mathematically formulated as a six-dimensional nonlinear dynamical system, where the additional dimension accounts for the memristive state variable. A comprehensive dynamical analysis is performed, including bifurcation diagrams, Lyapunov exponents, Kaplan-Yorke dimension, time-domain responses, and phase portraits, revealing complex chaotic behaviors. The theoretical predictions are validated through electronic circuit simulations using Multisim software. Furthermore, a synchronization model incorporating two coupled memristive subnetworks is developed to emulate interregional synchronization phenomena observed in biological neural systems.
- Chua L. O. Memristor – The missing circuit element. IEEE Transactions on Circuit Theory. 18 (5), 507–519 (1971).
- Strukov D. B., Snider G. S., Stewart D. R., Williams R. S. The missing memristor found. Nature. 453, 80–83 (2008).
- Xiao Z., Yan B., Zhang T., Huang R., Yang Y. Memristive devices-based hardware for unlabeled data processing. Neuromorphic Computing and Engineering. 2 (2), 022003 (2022).
- Yang J. J., Pickett M. D., Li X., Ohlberg D. A. A., Stewart D. R., Williams R. S. Memristive switching mechanism for metal/oxide/metal nanodevices. Nature Nanotechnology. 3 (7), 429–433 (2008).
- Junsangsri P., Lombardi F. Design of a hybrid memory cell using memristance and ambipolarity. IEEE Transactions on Nanotechnology. 12 (1), 71–80 (2013).
- Kopp M. I. A New Memristor-Based 4D Hyperchaotic System with Seven Terms and No Equilibrium Points. Nonlinear Dynamics and Systems Theory. 3 (5), 288–298 (2025).
- Vaidyanathan S. Adaptive Control of the Fitzhugh-Nagumo Chaotic Neuron Model. International Journal of PharmTech Research. 8 (6), 117–127 (2015).
- Choi S., Ham S., Wang G. Memristor Synapses for Neuromorphic Computing, Memristors – Circuits and Applications of Memristor Devices. IntechOpen (2019).
- Lin H., Wang C., Deng Q., Xu C., Deng Z., Zhou C. Review on chaotic dynamics of memristive neuron and neural network. Nonlinear Dynamics. 106, 959–973 (2021).
- Lin H., Wang C., Yu F., Sun J., Du S., Deng Z., Deng Q. A Review of Chaotic Systems Based On Memristive Hopfield Neural Networks. Mathematics. 11 (6), 1369 (2023).
- Haykin S. Neural Networks: A Comprehensive Foundation. Prentice-Hall, Englewood Cliffs (1998).
- Sprott J. C. Chaotic dynamics on large networks. Chaos. 18 (2), 023135 (2008).
- Sprott J. C. Elegant Chaos. Algebraically Simple Chaotic Flows. World Scientific Publishing Company (2010).
- Samuilik I., Sadyrbaev F., Ogorelova D. Comparative Analysis of Models of Gene and Neural Networks. Contemporary Mathematics. 4 (2), 217–229 (2023).
- Ogorelova D., Sadyrbaev F. Remarks on the Mathematical Modeling of Gene and Neuronal Networks by Ordinary Differential Equations. Axioms. 13 (1), 61 (2024).
- Kopp M. I., Samuilik I. I. Computer modeling and circuit implementation of a fivedimensional artificial neural network system. X International Scientific-Practical Conference Physical and Technological Problems of Transmission, Processing and Storage of Information in Infocommunication Systems, 15–17 May 2025, Chernivtsi, Ukraine. Book of Abstracts. 92–93 (2025).
- Kopp M. I., Samuilik I. Chaotic dynamics in Sprott's memristive artificial neural network: dynamic analysis, circuit implementation and synchronization. AIMS Mathematics. 10 (8), 19240–19266 (2023).
- Samuilik I., Sadyrbaev F., Atslega S. On mathematical models of artificial neural networks. Proceedings of 22nd International Scientific Conference Engineering for Rural Development, May 24-26, 45-50 (2023).
- Lin H., Wang C., Yao W., Tan Y. Chaotic dynamics in a neural network with different types of external stimuli. Communications in Nonlinear Science and Numerical Simulation. 90, 105390 (2020).
- Sundarapandian V., Volos Ch. Advances in Memristors, Memristive Devices and Systems. Springer, Cham, Switzerland (2017).
- Benettin G., Galgani L., Giorgilli A., Strelcyn J.-M. Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory. Meccanica. 15, 9–20 (1980).
- Wolf A., Swift J. B., Swinney H. L., Vastano J. A. Determining Lyapunov Exponents from a Time Series. Physica D. 16 (3), 285–317 (1985).
- Binous H., Zakia N. An Improved Method for Lyapunov Exponents Computation. https://library.wolfram.com/infocenter/MathSource/7109/ (2008).
- Sandri M. Numerical Calculation of Lyapunov Exponents. The Mathematica Journal. 6 (3), 78–84 (1996).
- Frederickson P., Kaplan J. L., Yorke E. D., Yorke J. A. The Liapunov Dimension of Strange Attractors. Journal of differential equations. 49, 185–207 (1983).