Chaotic dynamics of a new 7D memristor-based generator: computer modeling and circuit design

2025;
: pp. 116–131
https://doi.org/10.23939/mmc2025.01.116
Received: July 08, 2024
Accepted: September 26, 2024

Kopp M. I., Samuilik I.  Chaotic dynamics of a new 7D memristor-based generator: computer modeling and circuit design.  Mathematical Modeling and Computing. Vol. 12, No. 1, pp. 116–131 (2025)

1
Institute for Single Crystals, NAS Ukraine
2
Institute of Life Sciences and Technologies, Daugavpils University; Institute of Applied Mathematics, Riga Technical University

The paper introduces a new seven-dimensional (7D) chaotic system based on a memristor emulator created using a hyperbolic tangent function.  This system is derived from a six-dimensional (6D) dynamic system of equations that describes the process of magnetic field generation, serving as an alternative to the Rikitake dynamo, which explains the inversion of the magnetic field of the Earth and other celestial bodies.  The study analyzes the stability of equilibrium points in the new dynamical system.  The Lyapunov exponents spectrum and the Kaplan–Yorke dimension are calculated for fixed parameters of the 7D dynamical system.  The presence of a positive Lyapunov exponent demonstrates the chaotic behavior of the new 7D dynamic system, while the fractional Kaplan–Yorke dimension indicates the fractal structure of strange attractors.  Based on the results from Matlab–Simulink and LabVIEW models, a chaotic signal generator for the 7D chaotic memristive system is implemented in the Multisim environment.  The chaotic behavior simulation in the Multisim environment exhibits similar results to the simulations in the Matlab–Simulink and LabVIEW models.

  1. Radwan A. G., Fouda M. E.  On the Mathematical Modeling of Memristor, Memcapacitor, and Meminductor.  Springer Cham (2015).
  2. Azar A. T., Vaidyanathan S., Ouannas A.  Fractional Order Control and Synchronization of Chaotic Systems.  Springer Cham (2017).
  3. Boubaker O., Jafari S.  Recent advances in Chaotic systems and synchronization: from theory to real world applications.  London, Academic Press (2019).
  4. Rössler O. E.  An equation for hyperchaos.  Physics Letters A.  71 (2–3), 155–157 (1979).
  5. Matsumoto T., Chua L., Kobayashi K.  Hyperchaos: laboratory experiment and numerical confirmation.  IEEE Transactions on Circuits and Systems.  33 (11), 1143–1147 (1986).
  6. Jia Q.  Hyperchaos generated from the Lorenz chaotic system and its control.  Physics Letters A.  366 (3), 217–222 (2007).
  7. Chen A., Lu J., Lu J., Yu S.  Generating hyperchaotic Lü attractor via state feedback control. Physica A.  364, 103–110 (2006).
  8. Li X.  Modified projective synchronization of a new hyperchaotic system via nonlinear control.  Communications in Theoretical Physics.  52 (2), 274–278 (2009).
  9. Wang J., Chen Z., Chen G., Yuan Z.  A novel hyperchaotic system and its complex dynamics.  International Journal of Bifurcation and Chaos.  18 (11), 3309–3324 (2008).
  10. Ghosh D., Bhattacharya S.  Projective synchronization of new hyperchaotic system with fully unknown parameters.  Nonlinear Dynamics.  61, 11–21 (2010).
  11. Vaidyanathan S.  A ten-term novel 4D hyperchaotic system with three quadratic nonlinearities and its control.  International Journal of Control Theory and Applications.  6 (2), 97–109 (2013).
  12. Vaidyanathan S.  Qualitative Analysis and Properties of a Novel 4-D Hyperchaotic System with Two Quadratic Nonlinearities and Its Adaptive Control.  Advances in Chaos Theory and Intelligent Control.  455–480 (2016).
  13. Vaidyanathan S., Volos Ch. K., Pham V. T.  Hyperchaos, adaptive control and synchronization of a novel 5-D hyperchaotic system with three positive Lyapunov exponents  and its SPICE implementation.  Archives of Control Sciences.  24 (4), 409–446 (2014).
  14. Vaidyanathan S., Pham V.-T., Volos C. K.  A 5D hyperchaotic Rikitake dynamo system with hidden attractors.  The European Physical Journal Special Topics.  224, 1575–1592 (2015).
  15. Vaidyanathan S., Sambas A., Abd-El-Atty B., El-Latif A. A. A., Tlelo-Cuautle E., Guillén-Fernández O., Mamat M., Mohamed M. A., Alçin M., Tuna M., Pehlivan I., Koyuncu I., Ibrahim M. A. H.  A 5D Multi-Stable Hyperchaotic Two-Disk Dynamo System With No Equilibrium Point: Circuit Design, FPGA Realization and Applications to TRNGs and Image Encryption.  IEEE Access.  9, 81352–81369 (2021).
  16. Chua L. O.  Memristor-the missing circuit element.  IEEE Transactions on Circuit Theory.  18 (5), 507–519 (1971).
  17. Chua L. O., Kang S. M.  Memristive Devices and Systems.  Proceedings of the IEEE.  64 (2), 209–223 (1976).
  18. Strukov D. B., Snider G. S., Stewart D. R., Williams R. S.  The missing memristor found.  Nature.  453, 80–83 (2008).
  19. Sundarapandian V., Volos Ch.  Advances in Memristors, Memristive Devices and Systems.  Springer Cham, Switzerland (2017).
  20. Wang R., Li M., Gao Z., Sun H.  A New Memristor-Based 5D Chaotic System and Circuit Implementation.  Complexity.  2018, 6069401 (2018).
  21. Mezatio B. A., Motchongom M. T., Tekam B. R. W., Kengne R., Tchitnga R., Fomethe A.  A novel memristive 6D hyperchaotic autonomous system with hidden extreme multistability.  Chaos, Solitons & Fractals.  120, 100–115 (2019).
  22. Kou L., Huang Z., Jiang C., Zhang F., Ke W., Wan J., Liu H., Li H., Lu J.  Data encryption based on 7D complex chaotic system with cubic memristor for smart grid.  Frontiers in Energy Research.  10, 980863 (2022).
  23. Kopp M. I., Tur A. V., Yanovsky V. V.  Chaotic dynamics of magnetic fields generated by thermomagnetic instability in a nonuniformly rotating electrically conductive fluid.  Journal of Physical Studies.  27, 2403 (2023).
  24. Wolf A., Swift J. B., Swinney H. L., Vastano J. A.  Determining Lyapunov exponents from a time series.  Physica D: Nonlinear Phenomena.  16 (3), 285–317 (1985).
  25. Sandri M.  Numerical Calculation of Lyapunov Exponents.  The Mathematica Journal.  6 (3), 78–84 (1996).
  26. Cuomo K. M., Oppenheim A. V.  Circuit implementation of synchronized chaos with applications to communications.  Physical Review Letters.  71, 65–68 (1993).
  27. Larsen R. W.  LabVIEW for Engineers. Upper Saddle River, Prentice Hall/Pearson (2011).
  28. Kopp M., Kopp A.  A New 6D Chaotic Generator: Computer Modelling and Circuit Design.  International Journal of Engineering and Technology Innovation.  12 (4), 288–307 (2022).
  29. Kopp M., Kopp A.  A New 8D Lorenz-like Hyperchaotic System: Computer Modelling, Circuit Design and Arduino Uno Board Implementation.  Journal of Telecommunication, Electronic and Computer Engineering.  15 (2), 37–46 (2023).
  30. Lin H., Wang C., Yu F., Sun J., Du S., Deng Z., Deng Q. A.  Review of Chaotic Systems Based On Memristive Hopfield Neural Networks.  Mathematics.  11 (6), 1369 (2023).
  31. Deng Q., Wang C., Lin H.  Memristive Hopfield neural network dynamics with heterogeneous activation functions and its application.  Chaos, Solitons & Fractals.  178, 114387 (2024).