Photo-controllable percolation of decorated nanoparticles in a nanopore: molecular dynamics simulation study

2016;
: pp. 33-42
https://doi.org/10.23939/mmc2016.01.033
Received: June 10, 2016

Math. Model. Comput. Vol. 3, No. 1, pp. 33-42 (2016)

1
Institute for Condensed Matter Physics of the Nat. Acad. Sci. of Ukraine; Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Leibniz Institute of Polymer Research

By means of molecular dynamics simulations we study formation of the wall-to-wall     percolation cluster in the solution of decorated nanoparticles in a pore. The model takes into account photo-switching between unpolar \trans\ and polar \cis-isomers of azobenzene. This leads to either colloidal dispersion of the particles or their aggregation     in a polar solvent. The dynamics of percolation cluster formation is analysed by applying a pulse-like illumination. We found that the wall-to-wall percolation is subject to the    competition between nanoparticles aggregation, wall adsorption and microphase    separation of the nanoparticles.

  1. M. Yokoyama, K. Hosokawa, M. Nogi, and T. Naito, editors. Nanoparticle Technology Handbook. Elsevier, Amsterdam, 2008.
  2. Maria Hepel and Chuan-Jian Zhong, editors. Functional Nanoparticles for Bioanalysis, Nanomedicine, and Bioelectronic Devices Volume 1. American Chemical Society, jan 2012.
  3. Rafal Klajn, J. Fraser Stoddart, and Bartosz A. Grzybowski. Nanoparticles functionalised with reversible molecular and supramolecular switches. Chemical Society Reviews, 39(6), 2203, 2010.
  4. Roger H. Bisby, Carole Mead, and Christopher G. Morgan. Active uptake of drugs into photosensitive liposomes and rapid release on uv photolysis. Photochemistry and Photobiology, 72(1), 57–61, jul 2000.
  5. Xikui Liu and Ming Jiang. Optical switching of self-assembly: Micellization and micelle–hollow-sphere transition of hydrogen-bonded polymers. Angewandte Chemie International Edition, 45(23), 3846–3850, jun 2006.
  6. C. Raimondo, N. Crivillers, F. Reinders, F. Sander, M. Mayor, and P. Samori. Optically switchable organic field-effect transistors based on photoresponsive gold nanoparticles blended with poly(3-hexylthiophene). Proceedings of the National Academy of Sciences, 109(31), 12375–12380, jul 2012.
  7. V. Faramarzi, C. Raimondo, F. Reinders, M. Mayor, P. Samori, and B. Doudin. Optically switchable molecular device using microsphere based junctions. Appl. Phys. Lett. 99(23), 233104, 2011.
  8. Masumi Ikeda, Naoki Tanifuji, Hidehiro Yamaguchi, Masahiro Irie, and Kenji Matsuda. Photoswitching of conductance of diarylethene-au nanoparticle network. Chemical Communications, 13, 1355, 2007.
  9. Kyong ha Shin and Eun Ju Shin. Photoresponsive azobenzene-modified gold nanoparticle. Bulletin of the Korean Chemical Society, 29(6), 1259–1262, jun 2008.
  10. Corinna Raimondo, Bart Kenens, Federica Reinders, Marcel Mayor, Hiroshi Uji-i, and Paolo Samor`ı. Au nanoparticle scaffolds modulating intermolecular interactions among the conjugated azobenzenes chemisorbed on curved surfaces: tuning the kinetics of cis–trans isomerisation. Nanoscale, 7(33), 13836–13839, 2015.
  11. Jian Zhang, James K. Whitesell, and Marye Anne Fox. Photoreactivity of self-assembled monolayers of azobenzene or stilbene derivatives capped on colloidal gold clusters. Chemistry of Materials, 13(7), 2323–2331, jul 2001.
  12. Giustiniano Tiberio, Luca Muccioli, Roberto Berardi, and Claudio Zannoni. How does the trans-cis photoisomerization of azobenzene take place in organic solvents? ChemPhysChem, 11(5), 1018–1028, mar 2010.
  13. Haruhisa Akiyama, Kaoru Tamada, Juґichi Nagasawa, Koji Abe, and Takashi Tamaki. Photoreactivity in self-assembled monolayers formed from asymmetric disulfides having para-substituted azobenzenes. The Journal of Physical Chemistry B, 107(1), 130–135, jan 2003.
  14. Abhijit Manna, Peng-Lei Chen, Haruhisa Akiyama, Tian-Xin Wei, Kaoru Tamada, and Wolfgang Knoll. Optimized photoisomerization on gold nanoparticles capped by unsymmetrical azobenzene disulfides. Chemistry of Materials, 15(1), 20–28, jan 2003.
  15. Takeshi Kawai, Satoru Nakamura, Akihiro Sumi, and Takeshi Kondo. Control of dispersion-coagulation behavior of au nanoparticles capped with azobenzene-derivatized alkanethiol in a mixed chloroform-ethanol solvent. Thin Solid Films, 516(24), 8926–8931, oct 2008.
  16. Corinna Raimondo, Federica Reinders, Umut Soydaner, Marcel Mayor, and Paolo Samor`ı. Light-responsive reversible solvation and precipitation of gold nanoparticles. Chem. Commun. 46(7), 1147–1149, 2010.
  17. Sri Wahyuni Basuki, Viktor Schneider, Thomas Strunskus, Mady Elbahri, and Franz Faupel. Light-controlled conductance switching in azobenzene-containing MWCNT–polymer nanocomposites. ACS Appl. Mater. Interfaces, 7(21), 11257–11262, jun 2015.
  18. Jaroslav Ilnytskyi, Juho Lintuvuori, and Mark R. Wilson. Simulation of bulk phases formed by polyphilic liquid crystal dendrimers. Condensed Matter Physics, 13(3), 33001, 2010.
  19. Jaroslav Ilnytskyi. Relation between the grafting density of liquid crystal macromolecule and the symmetry of self-assembled bulk phase: coarse-grained molecular dynamics study. Condensed Matter Physics, 16(4), 43004, 2013.
  20. Arsen Slyusarchuk and Jaroslav Ilnytskyi. Novel morphologies for laterally decorated metaparticles: molecular dynamics simulation. Condensed Matter Physics, 17(4), 44001, dec 2014.
  21. Jaroslav M. Ilnytskyi and Marina Saphiannikova. Reorientation dynamics of chromophores in photosensitive polymers by means of coarse-grained modeling. ChemPhysChem, 3180–3189, sep 2015.
  22. Taro Kihara. Convex molecules in gaseous and crystalline states. In Advances in Chemical Physics, pages 147–188. Wiley-Blackwell, jan 1963.
  23. Juho S. Lintuvuori and Mark R. Wilson. A new anisotropic soft-core model for the simulation of liquid crystal mesophases. The Journal of Chemical Physics, 128(4), 044906, 2008.
  24. Jaroslav M. Ilnytskyi, Andrij Trokhymchuk, and Martin Schoen. Topological defects around a spherical nanoparticle in nematic liquid crystal: Coarse-grained molecular dynamics simulations. The Journal of Chemical Physics, 141(11), 114903, sep 2014.
  25. Nirmal K. Viswanathan, Dong Yu Kim, Shaoping Bian, John Williams, Wei Liu, Lian Li, Lynne Samuelson, Jayant Kumar, and Sukant K. Tripathy. Surface relief structures on azo polymer films. J. Mater. Chem., 9(9), 1941–1955, 1999.
  26. O. N. Oliveira, L. L. Kumar, and S. K. Tripathy. Surface-relief gratings on azobenzene-containing films. In Z. Sekkat and W. Knoll, editors, Photoreactive Organic Thin Films, pages 429–483. Academic Press, California, 2002.
  27. Tomiki Ikeda. Photomodulation of liquid crystal orientations for photonic applications. Journal of Materials Chemistry, 13(9), 2037, 2003.
  28. J. Hoshen and R. Kopelman. Percolation and cluster distribution. i. cluster multiple labeling technique and critical concentration algorithm. Phys. Rev. B, 14(8), 3438–3445, oct 1976.