Generalized kinetic equation with spatio-temporal nonlocality

: pp. 289–296
Received: September 05, 2019
Revised: October 12, 2019
Accepted: October 16, 2019

Mathematical Modeling and Computing, Vol. 6, No. 2, pp. 289–296 (2019)

Lviv Polytechnic National University
Lviv Polytechnic National University
Lviv Polytechnic National University
Lviv Polytechnic National University; Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine

A non-Markov kinetic equation with fractional derivatives for a nonequilibrium one-particle distribution function is obtained.  The resulting equation contains the generalized diffusion and friction coefficients in the space of coordinates and momentums of particles.  This equation can be used, in particular, for mathematical modeling of kinetic processes of particle transport in porous media with fractal structure.

  1. Kostrobij P., Markovych B., Viznovych O., Tokarchuk M.  Generalized diffusion equation with fractional derivatives within Renyi statistics.  Journal of Mathematical Physics. 57 (9), 093301 (2016).
  2. Kostrobij P., Markovych B., Viznovych O., Tokarchuk M.  Generalized electrodiffusion equation with fractality of space--time.  Mathematical Modeling and Computing. 3 (2), 163--172 (2016).
  3. Glushak P. A., Markiv B. B., Tokarchuk M. V.  Zubarev's Nonequilibrium Statistical Operator Method in the Generalized Statistics of Multiparticle Systems.  Theoretical and Mathematical Physics. 194 (1), 57--73 (2018).
  4. Kostrobij P., Markovych B., Viznovych O., Tokarchuk M.  Generalized transport equation with nonlocality of space–time. Zubarev’s NSO method.  Physica A. 514, 63--70 (2019).
  5. Kostrobij P., Markovych B., Viznovych O., Zelinska I., Tokarchuk M.  Generalized Cattaneo–Maxwell diffusion equation with fractional derivatives. Dispersion relations.  Mathematical Modeling and Computing. 6 (1), 58--68 (2019).
  6. Grygorchak I. I., Kostrobij P. P., Stasjuk I. V., Tokarchuk M. V., Velychko O. V., Ivaschyshyn F. O., Markovych B. M. Fizichni procesy ta ih mikroskopichni modeli v periodychnyh neorganichno/organichnih klatratah.Lviv, Rastr-7 (2015), (in Ukrainian).
  7. Kostrobij P. P., Grygorchak I. I., Ivaschyshyn F. O., Markovych B. M., Viznovych O. V., Tokarchuk M. V.  Mathematical modeling of subdiffusion impedance in multilayer nanostructures. Mathematical Modeling and Computing. 2 (2), 154--159 (2015).
  8. Grygorchak I. I., Ivaschyshyn F. O., Tokarchuk M. V., Pokladok N. T., Viznovych O. V.  Modification of properties of GaSe  <beta-cyclodexterin <FeSO4>>  Clathrat by synthesis in superposed electric and light-wave fields.  J. Appl. Phys. 121, 185501 (2017).
  9. Kostrobij P., Grygorchak I., Ivashchyshyn F., Markovych B., Viznovych O., Tokarchuk M.  Generalized Electrodiffusion Equation with Fractality of Space--Time: Experiment and Theory.  Journal of Physical Chemistry A. 122 (16), 4099--4110 (2018).
  10. Zubarev D. N.  Modern methods of the statistical theory of nonequilibrium processes.  Journal of Soviet Mathematics. 16 (6), 1509--1571 (1981).
  11. Zubarev D. N., Morozov V. G., Röpke G.  Statistical mechanics of nonequilibrium processes. Vol. 1. Moscow, Fizmatlit (2002).
  12. Zubarev D. N., Morozov V. G., Röpke G.  Statistical mechanics of nonequilibrium processes. Vol. 2. Moscow, Fizmatlit (2002).
  13. Markiv B. B., Tokarchuk R. M., Kostrobij P. P., Tokarchuk M. V.  Nonequilibrium statistical operator method in Renyi statistics. Physica A. 390 (5), 785--791 (2011).
  14. Tarasov V. E.  Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media.  Nonlinear Physical Science.  Berlin, Heidelberg, Springer (2010).
  15. Tarasov V. E.  Fractional generalization of Liouville equations.  Chaos. 14 (1), 123--127 (2004).
  16. Tarasov V. E.  Fractional Liouville and BBGKI equations.  Journal of Physics: Conference Series. 7 (1), 17 (2005).
  17. Tarasov V. E.  Fractional systems and fractional Bogoliubov hierarchy equations.   Phys. Rev. E. 71, 011102 (2005).
  18. Kobelev Y. L., Kobelev L. Y., Romanov E. P.  Kinetic equations for large systems with fractal structures.  Doklady Physics. 45 (5), 194--197 (2000).
  19. Kobelev Y. L., Kobelev L. Y., Kobelev V. L., Romanov E. P.  Description of diffusion in fractal media on the basis of the Klimontovich kinetic equation in fractal space.  Doklady Physics. 47 (8), 580--582 (2002).
  20. Tarasov V. E.  Transport equations from Liouville equations for fractional systems.  International Journal of Modern Physics B. 20 (03), 341--353 (2006).
  21. Cottrill-Shepherd K., Naber M.  Fractional differential forms.  Journal of Mathematical Physics. 42 (5), 2203--2212 (2001).
  22. Mainardi F.  Fractional Calculus, pp. 291--348.  Vienna, Springer Vienna (1997).
  23. Caputo M., Mainardi F.  A new dissipation model based on memory mechanism.  Pure and applied geophysics. 91 (1), 134--147 (1971).
  24. Oldham K. B., Spanier J.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order.  Dover Books on Mathematics, Dover Publications (2006).
  25. Samko S. G., Kilbas A. A., Marichev O. I.  Fractional Integrals and Derivatives:  Theory and Applications.  Gordon and Breach Science Publishers (1993).