The article presents the results of the numerical simulation of the Maxwell fluid flow in the system supplying hydrodynamically active polymer in the boundary layer of a streamlined object. The case of slow flow is considered. In this case, the inertial terms can be neglected, the velocities, stresses, and stream functions can be written as the decomposition by Weisenberg number, and we can assume that the Weissenberg number is less than one. The established features of the behaviour of the Maxwell fluid flow with a longitudinal velocity gradient and the manifestation of the effects of elastic deformations are crucial for understanding processes taking place in the system supplying hydrodynamically active polymer in the boundary layer of a streamlined object. Understanding the nature of the effects of elastic deformations in the supplying system makes it possible to offer a hydrodynamic calculation of the modes of polymer solution injection into the boundary layer without any negative manifestations of the effects of the elastic deformations. The results of the numerical simulation confirmed the conception on the deformation-stress state of macromolecules (fluid elements) in polymer solution converging flow, based on the data previously obtained from experimental decisions concerning the hydrodynamic field structure in the input area of a slot and other openings.
- Pogrebnyak V. G., Pisarenko A. A. Solutions of Polymers under the Conditions of Wall Turbulence. Mechanism of Drag Reduction. International Journal of Fluid Mechanics Research. 29 (6), 779–797 (2002).
- Ivanyuta Yu. F. Experimental research of the influence of conditions of polymer admission to the boundary layer on reduction of turbulence friction. Inter. symposium on Seawater Drag Reduction, Newport, Rhode Island, 295–297 (1998).
- Povkh I. L., Toryanik A. I. Relation between molecular structure of polyethylene oxide solutions and drag reduction. Journal of Engineering Physics. 37 (4), 1131–1136 (1979).
- Pogrebnyak V. G., Naumchik N. V. On the hydrodynamic activity of polymers in high-velocity flows. Inzhenerno-Fizicheskii Zhurnal. 68 (1), 146–148 (1995), (in Russian).
- Povkh I. L., Ivanyuta Yu. F. Effekty uprugih deformatsiy pri podvode rastvora polimera na poverhnost obtekaemogo tela i snizhenie gidrodinamicheskogo soprotivleniya. Trudy po sudostroeniyu. Sektsiya V. Gidrodinamika sudov. TsNII im. akad. A. N. Krylova, Sankt-Peterburg, 299–306 (1994), (in Russian).
- Pisarenko A. A. Deformation effects in case of a flow with stretching of polymer solutions. Turbulence and Shear Flow Phenomena, in: S. Banerjee and J. K. Eaton (Eds.), Santa Barbara, California; New York, 1345–1350 (1999).
- Pogrebnyak A. V., Perkun I. V. Pogrebnyak V. G. Degradation of Polymer Solutions in a Hydrodynamic Field with a Longitudinal Velocity Gradient. Journal of Engineering Physics and Thermophysics. 90 (5), 1219–1224 (2017).
- Astarita J., Marucci J. Osnovyi gidromehaniki nenyutonovskih zhidkostey. Mir, Moscow (1978), (in Russian).
- De Gennes P. G. Coil-stretch thransition of dilute flexible polymers under ultrahigh velocity gradients. J. Chem. Phys. 60 (12), 5030–5042 (1974).
- Pogrebnyak A. V. Rozrahunok parametriv strumeneformuyuchoyi golivky dlya vodopolimernoyi obrobky materialiv rizannyam. Nauk. visnik Natsion. Lisotehnich. Univer: Uraine. Lviv. 27 (3), 187–190 (2017), (in Ukrainian).
- Vinogradov G. V., Malkin A. Ya. Reologiya polimerov. Khimiya, Moscow (1977).
- Ferri J. Vyazkouprugie svoystva polimerov. Inostr. lit., Moscow (1993), (in Russian).
- Kristensen R. Vvedenie v teoriyu vyazkouprugosti. Mir, Moscow (1994), (in Russian).
- Lodge A. S. Elastichnyie zhidkosti. Vvedenie v reologiyu konechnodeformiruemyih polimerov. Nauka, Moscow (1999), (in Russian).
- Nakamura K. Medlennoe istechenie vyazkouprugoy zhidkosti po konicheskomu kanalu. Senk'i kikay gakkay si. 31 (8), 49–55 (1978), (in Japanese).
- Voytkunskiy Ya. I., Amfilohiev V. V., Pavlovskiy V. A. Sb. nauch. tr. Leningr. korablestr. ins-t. 69, 19–25 (1970), (in Russian).
- Hintse I. O. Turbulentnost. Mehanizm i teoriya. Phiz.-mat. Izdat., Moscow (1963), (in Russian).
- Pogrebnyak V. G., Ivanyuta Yu. F., Frenkel S. Ya. Structure of the hydrodynamic field and strain behavior of flexible makromolecules in convergent flow. Vysokomolekulyarnye Soedineniya. Seriya A. 34 (3), 133–138 (1992), (in Russian).
- Pogrebnyak A., Chudyk I., Pogrebnyak V., Perkun I. Coil-uncoiled chain Transition of Polyethylene Oxide Solutions. Chem. Chem. Technol. 13 (4), 465–470 (2019).
- Brestkin Yu. V., Amribakhshov A. A., Kholmuminov A. A., Frenkel S. Y. Razvorachivanie makromolekul pri shodyaschemsya techenii. Izv. AN UzSSR. Seriya phiz.-mat. nauk. 6, 80–84 (1988), (in Russian).