Influence of the uniaxial stress $p_2$ and transverse fields $E_1$ and $E_3$ on the phase transitions and thermodynamic characteristics of GPI ferroelectric materials

2021;
: pp. 454–464
https://doi.org/10.23939/mmc2021.03.454
Received: April 01, 2021
Revised: June 26, 2021
Accepted: July 05, 2021

Mathematical Modeling and Computing, Vol. 8, No. 3, pp. 454–464 (2021)

1
Institute for Condensed Matter Physics
2
Lviv Polytechnic National University
3
Institute for Condensed Matter Physics
4
Lviv Polytechnic National University

A modified GPI model that accounts for the piezoelectric coupling between the ordered structural elements and the strains $\varepsilon_j$ has been used for studing of effects arising in GPI ferroelectrics under the action of the uniaxial stress $p_{2}$ and electric fields $E_1$ and $E_3$.  The  polarization vectors and components of static dielectric permittivity are calcucated in the two-particle cluster approximation for mechanically clamped  crystal, and piezoelectric and thermal parameters are also determined.  The influence of the simultaneous action of the stress $p_{2}$ and fields $E_1$ and $E_3$ on the phase transition and physical characteristics of GPI crystal has been studied.

  1. Dacko S., Czapla Z., Baran J., Drozd M.  Ferroelectricity in Gly$\cdot$H$_{3}$PO$_{3}$ crystal.  Physics Letters A. 223 (3), 217–220 (1996).

  2. Stasyuk I., Czapla Z., Dacko S., Velychko O.  Proton ordering model of phase transitions in hydrogen bonded ferrielectric type systems: the GPI crystal.  Condens. Matter Phys. 6 (3), 483–498 (2003).

  3. Stasyuk I., Czapla Z., Dacko S., Velychko O.  Dielectric anomalies and phase transition in glycinium phosphite crystal under the influence of a transverse electric field.  J. Phys.: Condens. Matter. 16 (12), 1963–1979, (2004).

  4. Stasyuk I., Velychko O.  Theory of Electric Field Influence on Phase Transition in Glycine Phosphite.  Ferroelectrics. 300 (1), 121–124 (2004).

  5. Zachek I. R., Shchur Ya., Levitskii R. R., Vdovych A. S.  Thermodynamic properties of ferroelectric NH$_3$CH$_2$COOH$\cdot$H$_2$PO$_3$ crystal.  Physica B. 520, 164–173 (2017).

  6. Zachek I. R., Levitskii R. R., Vdovych A. S., Stasyuk I. V.  Influence of electric fields on dielectric properties of GPI ferroelectric.  Condens. Matter Phys. 20 (2), 23706 (2017).

  7. Vdovych A., Zachek I., Levitskii R.  Calculation of transverse piezoelectric characteristics of quasi-one-dimensional glycine phosphite ferroelectric.  Mathematical Modeling and Computing. 5 (2),  242–252 (2018).

  8. Zachek I. R., Levitskii R. R., Vdovych A. S.  Deformation effects in glycinium phosphite ferroelectric.  Condens. Matter Phys. 21 (3), 33702 (2018).

  9. Nayeem J., Kikuta T., Nakatani N., Matsui F., Takeda S.-N., Hattori K., Daimon H.  Ferroelectric Phase Transition Character of Glycine Phosphite.  Ferroelectrics. 332 (1), 13–19 (2006).

  10. Shikanai F., Hatori J., Komukae M., Czapla Z., Osaka T.  Heat Capacity and Thermal Expansion of NH$_3$CH$_2$COOH$\cdot${H}$_2$PO$_3$.  J. Phys. Soc. Jpn. 73 (7), 1812–1815 (2004).

  11. Wiesner M.  Piezoelectric properties of GPI crystals.  Phys. Stat. Sol (b). 238 (1), 68–74 (2003).

  12. Yasuda N., Sakurai T., Czapla Z.  Effects of hydrostatic pressure on the paraelectric–ferroelectric phase transition in glycine phosphite (Gly$\cdot${H}$_3$PO$_3$).  J. Phys.: Condens Matter. 9 (23),  L347–L350 (1997).

  13. Yasuda N., Kaneda A., Czapla Z.  Effects of hydrostatic pressure on the paraelectric–ferroelectric phase transition in deuterated glycinium phosphite crystals.  J. Phys.: Condens Matter. 9 (33),  L447–L450 (1997).

  14. Nayeem J., Wakabayashi H., Kikuta T., Yamazaki T., Nakatani N.  Ferroelectric Properties of Deuterated Glycine Phosphite.  Ferroelectrics. 269, 153–158 (2002).